
Solutions to Test #1

1a) True. Because f(x) is continuous at 3, we have 4 = limx→3 f(x) = f(3).
1b) False. Square roots are always positive, so the limit is +∞.
1c) False. Only limx→0 sin(2x)/x = 2, but it is certainly not true that sin(2x)/x = 2 for

all numbers x.
1d) False. Because sec(x) = 1/ cos(x) and cos(x) = 0 for x = π/2 + nπ where n =

0,±1,±2, . . . , sec(x) is not defined and thus not continuous at x = π/2 + nπ.
1e) False. Consider the example limx→0 x/x = 1.
1f) True.

2a) The object hits the ground when s(t) = 0. We solve 0 = 160− 16t2 = 16(10− t2) and
get t = ±

√
10. Thus take t =

√
10.

2b) The average velocity over the interval [0, 3] is:

s(3)− s(0)

3− 0
=

160− 16(3)3 − 160

3
= −48 ft./s..

2c) The instantaneous velocity at time t = 3 is

lim
h→0

s(3 + h)− s(3)

h
= lim

h→0

160− 16(3 + h)2 − 160 + 16(3)2

h

= lim
h→0

−16(32 + 6h+ h2) + 16(3)2

h

= lim
h→0

−16(32 + 6h+ h2) + 16(3)2

h
= lim

h→0

−16(6h+ h2)

h

= lim
h→0

−16h(6 + h2)

h

= lim
h→0
−16(6 + h) = −16(6) = −96 ft./s..

3) The function g(x) is clearly continuous everywhere except perhaps at x = 2. We compute:

lim
x→2−

g(x) = lim
x→2−

kx2 − 1 = lim
x→2

kx2 − 1 = 4k − 1.

lim
x→2+

g(x) = lim
x→2+

2x+ 3 = lim
x→2

2x+ 3 = 7.

Because limx→2 g(x) exists if and only if limx→2− g(x) = limx→2+ g(x), we see that limx→2 g(x)
exists if and only if 4k − 1 = 7 or k = 2. If k = 2, then

lim
x→2

g(x) = lim
x→2+

g(x) = lim
x→2

g(x) = 7.

If k = 2, we also have g(2) = 2(2)2−1 = 7. Hence, if k = 2, we have limx→2 g(x) = 7 = g(2)
so g(x) is continuous at 2 and hence everywhere.
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4a) limx→−2
x2−2x−8
x2−4 = limx→−2

(x−4)(x+2)
(x−2)(x+2) = limx→−2

(x−4)
(x−2) = −6

−4 = 3
2 .

4b) limx→−2
x2−2
x2+4

= 0
(−2)2+4

= 0

4c) limx→3
|x−3|

x2−6x+9
= limx→3

|x−3|
(x−3)2 = limx→3

1
|x−3| = +∞.

Note that |x− 3| ≥ 0 and (x− 3)2 = |x− 3|2 ≥ 0, so the quotient must also be ≥ 0.

4d) limx→−2+
x−1
x+2 = −∞. Observe that for x − 2, we have x+ 2 > 0 but for −2 < x < −1,

x− 1 < 0. Hence the quotient (x− 1)/(x+ 2) < 0 for x ∈ (−2,−1) so the limit is −∞.

4e) limx→−∞
4x5+3x−2
3x5+4

= limx→−∞
4x5

3x5 = 4
3

4f) We use the Squeeze theorem. Observe that for all x, −1 ≤ sin(x2) ≤ 1. Hence,

− 1

x2
≤ sin(x2)

x2
≤ 1

x2
.

We know that lim
x→∞

±1/x2 = 0, so, by the Squeeze theorem lim
x→+∞

sin(x2)

x2
= 0 .

4g)

lim
x→0

tan(5x)

x+ sinx
= lim

x→0

tan(5x)
5x · (5x)

x+ sinx
x · x

== lim
x→0

tan(5x)
5x · (5x)

x(1 + sinx
x )

= lim
x→0

tan(5x)
5x · 5

(1 + sinx
x )

=
1 · 5
1 + 1

=
5

2
.

4h)

lim
x→0

1− cos(3x)

x2
= lim

x→0

1− cos(3x)

x2
1 + cos(3x)

1 + cos(3x)

= lim
x→0

1− cos2(3x)

x2
1

1 + cos(3x)

= lim
x→0

sin2(3x)

x2
1

1 + cos(3x)

= lim
x→0

3
sin(3x)

3x
3

sin(3x)

3x

1

1 + cos(3x)

= (3)(3)
1

1 + 1
=

9

2
.
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5) The function f(x) = x4 + x− 1 is a polynomial so it is continuous everywhere. Thus we
may apply the IVT on any interval. We are trying to solve the equation f(x) = 0. Because
−1 = f(0) < 0 < 1 = f(1), the IVT implies that there is a solution in [0, 1]. We compute
f(1/2) = (1/16) + (1/2) − 1 = (1 + 8 − 16)/16 < 0. Thus the IVT implies that there is a
solution in the interval [1/2, 1]. This gives one solution to the desired precision. Next we
compute f(−2) = 13 > 0 > −1 = f(−1) so there is a solution in [−2,−1]. We compute:

f(−3/2) = (81/16)− (3/2)− 1 =
81− 24− 16

16
> 0,

so we have the inequalities f(−3/2) > 0 > f(−1) and the IVT implies that there is a
solution in [−3/2,−1].

6) There are many possible sketches satisfying these requirements.

7a) The definition can be read in the textbook.

7b) We compute |f(x)− L| = |(5x− 7)− 8| = 5|x− 3|. Thus,

if |x− 3| < δ, then |f(x)− L| = 5|x− 3| < 5δ.

Hence, given ε > 0 choose δ = ε
5 . With this choice, if 0 < |x − 3| < δ = ε/5, we have

|f(x)− L| = 5|x− 3| < 5δ = 5 ε
5 = ε and this proves the desired limit.

7c) Compute

|f(x)− L| = |(2x2 + 1)− 19| = |2x2 − 18| = 2|x− 3||x+ 3|.
We need to control the size of the factor |x+ 3|.

Make a preliminary choice, δ ≤ 1.
Then |x− 3| < δ ≤ 1 implies |x− 3| < 1, so −1 < x− 3 < 1. By adding 6 to all sides, we

get 5 < x+ 3 < 7. Hence, we’ve shown that

if |x− 3| < δ ≤ 1, then |x+ 3| < 7, hence, further,

(0.1) If |x− 3| < δ ≤ 1, then |f(x)− L| = 2|x− 3||x+ 3| < 2δ · 7 = 14δ,

So, given ε > 0, make the final choice, δ = min(1, ε/14). With this choice δ ≤ 1 and
δ ≤ ε/14, so we can complete inequality (0.1) to:

if |x− 3| < δ = min(1, ε/14), then |f(x)− L| = 2|x− 3||x+ 3| < 2δ · 7 = 14δ ≤ 14
ε

14
= ε,

as required.


