Panther ID:		

NAME: _____

MAC 2311: Worksheet Jan. 31, 2017

- 1. For $f(x) = x^2 2x$, sketch the following secant lines and find their slopes:
- (a) Between the points (1, f(1)) and (2, f(2));
- (b) Between the points (1, f(1)) and (0, f(0)).
- 2. Find the equation of the line tangent to the given graph at the indicated point:

(a)
$$f(x) = x^2 - 2x$$
 at $x_0 = 1$;

(b)
$$f(x) = x^2 - 2x$$
 at an arbitrary point x_0 ;

(c)
$$f(x) = \sqrt{2x+3}$$
 at $x_0 = 2$;

(d)
$$f(x) = \sqrt{2x+3}$$
 at an arbitrary point x_0 .

- 3. The height of a ball in feet above the ground at time t seconds is given by $s(t) = -32t^2 + 14t$.
- (a) Find the average velocity of the ball in the time interval [1, 3] seconds.
- (b) Find the instantaneous velocity of the ball at the moment $t_0=1$ second.

4. Use the definition to find the derivatives f'(x) of the given functions:

(a)
$$f(x) = 4x + 2$$

(b)
$$f(x) = \frac{1}{x^2}$$

5. Is the function f(x) = |x| differentiable at $x_0 = 0$? Explain why or why not by showing that the limit defining f'(0) does or does not exist.