To receive credit you MUST SHOW ALL YOUR WORK.

1. (3 pts) Replace the polar equation $r\cos\theta + r\sin\theta = 1$ with an equivalent Cartesian equation. Then describe or identify the graph.

As x=rcos0 and y=r=hed, the equation above is equivalent to x+y=1. This is a line.

2. (a) (4 pts) Sketch the cardioid $r = 1 - \sin \theta$ in the Cartesian xy-plane. Be sure to indicate the axis of symmetry and give the polar coordinates of at least 5 points.

Symmetrical w.r.t. y-axis (=> sin(=+0) = sin 0)

(b) (4 pts) Set up an integral (or sum/difference of integrals) that represents the area of the region inside the circle r=1/2, but outside the cardioid $r=1-\sin\theta$. You DO NOT have to spend time evaluating the integral. It is not required for this quiz.

Intersection of the two curves
$$\begin{cases}
r = \frac{1}{4} & \Rightarrow \frac{1}{4} = 1 - s_1 \sin \theta \\
r = 1 - s_1 \sin \theta = \frac{1}{4} \Rightarrow \theta_1 = \frac{1}{6}, \theta_2 = \frac{1}{6} = \frac{1}{6}
\end{cases}$$

$$\theta = \frac{5}{6}$$

$$Shub = \frac{1}{4} \Rightarrow \theta_1 = \frac{1}{6}, \theta_2 = \frac{1}{6} = \frac{1}{6}$$

 $A = \frac{1}{2} \left(\left(\frac{1}{2} \right)^2 - \left(1 - s m \theta \right)^2 \right) d\theta$