1. Use substitution to compute each integral:

$$(a) \int_0^1 x e^{-x^2} dx$$

$$(b) \int_0^1 \frac{x^2}{2x^3 + 1} \ dx$$

$$(c) \int_{e}^{e^2} \frac{1}{x\sqrt{\ln x}} \, dx$$

$$(d) \int_0^{\pi/2} \frac{\sin(2x)}{2 + \cos(2x)} \, dx$$

2. Show that the Fresnel sine function $S(x) = \int_0^x \sin(t^2) dt$ satisfies the differential equation

$$(S'(x))^2 + \left(\frac{S''(x)}{2x}\right)^2 = 1$$
.

- **3.** Given that $F(x) = \int_0^x \sqrt{8t t^2} dt$, for $x \in [0, 8]$, do the following:
- (a) Determine the values of F(0), F(4), F(8). Hint: Complete the square and use geometry.
- (b) Determine F'(x) and F''(x).
- (c) Based on parts (a) and (b), sketch the graph of the function y = F(x), for $x \in [0, 8]$. What kind of point is x = 4 for the graph of y = F(x)?