282 CHAPTER 4. THE REAL NUMBERS

(c) #°
(d) ¢°

(e) What do you notice?

21.7Find the twelfth decimal in the decimal expansion of /3.

'22. The continued fraction expansion of v/2 has period one, while
. the expansion of v/3 has period two. Experimenting with con-
tinued fraction expansions of square roots, answer the follow-

ing. Give reasons for your answers if you can.

(a) For which n does /7 bave a continued fraction expansion
of period one?

{b) For which n does /n have a continued fraction expansion
of period two?

4.4 Searching for Transcendental Numbers

‘We have studied irrational numbers from three different perspec-
" tives: algebra, geometry, and analysis. We have distinguished differ-
ent types of irrationals: quadratic numbers, constructible numbers,

polygon numbers, arithmetic numbers, and algebraic numbers. We -

have met just about all types of known irrational .numbers. But we
haven’t yet found a home for the two most famous irrational num-
bers of all, 7 and e. We are in good company. They were not proved
to be irrational until the mid-1700s; this was accomplished by John
Lambert (1728—1777). And they were not proved to be nonalge-
braic until the late 1800s; Charles Hermite (1822~1901) proved in
1872 that ¢ was not algebraic, Ferdinand Lindemann (1852—1939)
proved in 1882 that n was not algebraic. In fact, it was not until
‘1844 that a nonalgebraic irrational number was known at all. Tt was
constructed by the French mathematician J. Liouville (1809—1882).
The proof that a new kind of number existed is fascinating; we shall
return to it later. In the twentieth century the search for these new
numbers has not produced a great many of them. In 1900, the Ger-
man mathematician David Hilbert (1862—1943) presented his 23 fa-
mous problems at the International Congress in Paris, and problem
7 posed the question of whether the number 2V? was algebraic or
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not. It was shown to be not algebraic in 1934 by the Russian mathe-
matician Aleksander Gelfond (1906—1968). But today, more than 60
years later, many numbers are only suspected of being nonalgebraic,
Here we shall carry out our own search for these rare, yet plentiful
numbers. They are called transcendental numbers.

Definition 4.4.1 A number is o transcendental number if it s
not algebraic.

Notation: We denote the set of real transcendental numbers by T.

That such numbers exist, and exist in great numbers, was proved
by the German mathematician Georg Cantor (1845—1918). His proof
involves counting members of infinite sets. This involves taking a
brief detour into set theory. We shall examine the sizes of different
infinite sets. We know, for example, that the set of natural numbers
is infinite, basically because there is no largest natural number. We
shall say that any set is countable if we can attach a unique natural
number to every element; that is, if we can count every member. This
makes sense. What may be difficult, however, is the reasoning behind
some of the proofs. Since we do not intend to give a background in
set theory, reading of the proofs will be slow going for those who have
not had experience with functions and one-to-one correspondences,
but the concepts are not that difficuls. Let us recall a few basic
definitions. A function is a one-to-one correspondence if it sends
distinct elements to distinct images; that is, if f(a) = f(b) then
a = b. A function maps A into B if theset {f(z}:2 € A} C B. A
function maps A onto B if the set {f(z):z € A} = B.

Definition 4.4.2 4 set S is countable if there is a one-to-one
Junction from S into N, the set of natural numbers.

Example 4.4.3
(a) The even positive numbers are countable. Let f be the count-
ing function that assigns even positive numbers to natural murabers
as follows:
2—1, 4—2, 63 ...,2n—n

So f(2n) = n.

(b) The integers are countable. Let I be the counting function
that assigns to each integer a natural number as follows:

01, 152 —1-—3 24, —-255,....
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So I{0) = 1 and for n > 0,I(n) = 2n and I(~n) = 2n + 1. We will
refer to this particular counting function I again.

()Let S={z:0<z<landzis wwﬁonw..ww. This set of rationals
between 0 and 1 is countable. Let R be the counting function that
assigns to each rational in S a natural numbet as follows:

1/2 —1,1/3—2,2/3 =3, 1/4—4,3/4—6,....

In general, R(a/b) = a + (b — 1){(b — 2)/2 where a/b is reduced to
lowest terms. We shall refer to this function R again. Notice that R
maps the set of rationals into, rather than onto, the set of natural
numbers. That is because R does not assign a value to a/b if the
fraction is not in lowest terms. So, for example, the nuraber 5 is not
the image of any fraction. Under the formula. its pre-image would be
2/4, but this fraction is not in lowest terms. =

The following theorem is useful to us. It employs some ingenious
counting methods; in particular, it relies on the fundamental theorem
of arithmetic and the fact that there are infinitely many primes.

Theorem 4.4.4 IfS51, 83,...5n,... 18 a countable collection of count-
able sets, then |} S; is countable.

Proof Here is how we shall assign the aoabﬁs_m numbers. We assumme
that each of the sets, Si, has a counting function (call it f;) that
counts the specific set, S;. Let g count the members of {J5; as
follows: If z € | S;, then let § = min{i : z € §;}. Let g(z) = &w @
Here p; represents the jthi prime. Now this function g is one-to-one
because, by definition, = is picked from a particular set location so j
is unique and f; is one-to-one. 0

Thecrem 4.4.5 The set of rational numbers am countable.

Proof This follows from Theorem 4.4.4 because the rational num-
bers are a countable set of countable sets. Adopting the temporary
notation (n,n + 1) to indicate the set of rational numbers between n
and n+ 1 and recalling that Z represents the set of integers, we may
write .
Q=ZUO,Nu((-1,00uU1,2ju(-2,~-1}U....

Example 4.4.3 (b) shows this is a countable collection of sets, Exam-
ple 4.4.3 {c) shows each of the sets is countable. O
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Example 4.4.6 . .

(a) Let us see what a counting function will look like that can
count the rationals. It will be made up of the functions I and R from
Example 4.4.3. Let z = ~3/5. And let the following sets be

Z=5. (0,1)=358, (-1,0)=>5,...-

We find that z € (—1,0) = S3. In fact, z = -1 +2/5. Now the
counting function R assigns 8 to 2 /5 because § = 2+ (3)(4)/2. So
g{z) = 5°. We use 5 because it is the third prime.

(b) Let us find what number is assigned to ¢ = 64/17. Now z =
3.+13/17 50z € (3,4) = Ss. Also, R(18/17) = 5+H%mx$<m =133.
And 19 is the eighth prime number. So g(z) = 19, ]

We now set about counting the algebraic mxmbers. W@o.pm mwwﬂ an
algebraic number is a solution to a polynomial equation with integer

coefficients.

Definition 4.4.7 The number z is an algebraic number of Q@mﬁ.wm T
if z is a solution to & polynomial of degree n with @.\:R.qm.ﬂ coefficients
and n is the smallest degree polynomial for which this is true.

Theorem 4.4.8 The set of algebraic numbers of degree n s count-
gble.

Proof Let § be the set of algebraic numbers of degree n. We
describe a function, g, that counts the members of 5. Let s wm.mw
algebraic number of degree n. So sis a solution to the equation
ao + 1% + -+ + anz™ = 0. Recalling the function I: 7(0) = 1 and
for n > 0,I(n) =2n and I(~n) =2n+1, let

gls) = 270 x 31(e1) x 51e2) - X pnia 1©n) X Poyit1

where s is the ith of the n possible real solutions (recall the funda-
mental theorem of algebra) numbered from srallest to largest mﬁa
pp, 1s the nth prime pumber. If s is a multiple root we can count it
multiple times, as we did when counting fractions in mxmmnﬁm 4.4.3
(c). Also recall that I is the function that counts the integers as
defined in 4.4.3 (b). [



286 CHAPTER 4. THE REAL NUMBERS

Example 4.4.9
Consider the middle, or second, real solution, call it s, to the
polynomial equation #° +-0x4+0z%+0z? — 5541 = 0. There are three
real solutions to this quintic. Incidentally, they are all nonarithmetic
bﬁm%wﬁ.mg as Theorem 4.1.16 tells us. Using the scheme used in the
g proof of Theorem 4.4.8, let’s find out what number will be assigned
-to 5. Note that I(1) = 2, I{0) = 1, and f(—5) = 11. Notice also that
2 is the first prime, 3 is the second, and 13 is the sixth. We shall call
our solution s the second solution. Thus

g(s) = 2% x 311 x 5% x 7% x 111 x 13% x 19.

Hmém_ogmmdwmmﬁwwmmﬁommwmﬁmmmwnooﬁﬂvmncgdgmbﬁﬁw.@n
would be -

92 5 31 5 51 e 71w 111 x 182 x 17, B

M.chwmuﬁ 4.4.10 There are a countable number of algebraic num-
ers. |

Proof Since there are a countable number of algebraic numbers

of degree n and a countable number of degrees, this follows from
Theorem 4.4.4. , [

Now comes the surprise: We cannot count the real numbers; there
are too many. Since we can count the algebraic numbers, the rest of
the real numbers, the transcendentals, must not be countable. That

means there are Jots more transcendental numbers than algebraic
numbers.

Theorem 4.4.11 (Cantor) The real numbers cannot be counted.

Proof Consider S, the set {z: 0 < z < 1, where z is & real number}.
Suppose we have found a counting function f from 5 to N. We shall
use the following notation: If z € §, then f(z) = n, for some natural
mamber n, and we shall represent x by the decimal expansion

T = O.D?H@Pm e Qn ks

.,Sw me..m assume that a number ending in all 9s will be designated
by its equivalent that ends in all 0s. We say this for uniqueness of
representation. Now we construct a real number as follows .

ﬁnc.@,.—w.m...ww..;
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where by == 0, if agg % 0, bp = 1, if agp = 0.

Notice that r cannot be identical with any of the real numbers we
have counted because it differs at the kth place. So our assumption
that the counting function counted all real numbers was wrong. Thus
there is no such function; the reals are uncountable. i

Corollary 4.4.12 The transcendentdl numbers cannot be counted.

Now that we know that there are oodles of transcendental num-
bers, the search is on to find them. We have examined solutions of
polynomial equations, pumbers that can be constructed from straight-
edge and compass, polygon numbers, and limits of continued frac-
tion expansions. We bave not found a single transcendental number
among them and, had we not been clued in that 7 and e are tran-
scendental, we could not point to a single example. Of course, we
can generate a few transcendentals from the ones we already know
as this theorem shows.

Theorem 4.4.13 Ifz is o transcendental number and y is algebraic,
then z+y, T—Y, TY, Y/T z/y, =, and Yz are all transcendental
numbers.

Proof We proceed by assuming the contrary and deriving a contra-
diction. Here is how it works for the sum of two numbers. Let = be
a transcendental number and y an algebraic number. Then suppose
that z is algebraic, where z = z-+y. It follows that ¢ = z—y and this
implies z is algebraic; a contradiction. So z must be franscendental.
(Now this is an easy proof compared to what has come before.) O

So we know that arithmetic combinations 7 with algebraic num-
bers and e with algebraic numbers will yield transcendental numbers.
We should note that Theorem 4.4.13 implies that /7 is transcen-
dental. This fact shows that it is impossible, with straightedge and
compass, to square the circle. That is, it is impossible to build a
square with the same area as the area of a circle. This was one of the
¢amous unsolved problems that the Greek mathematicians posed.

Before we unleash a whole host of transcendental mumbers on
you, numbers that have been proved transcendental only recently
(in this century), let us study the first transcendental that was con-
structed. A couple of the proofs are tough going and are included
for the sake of completeness, but the ideas behind them are in the
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spirit of our examination of continued fractions, best possible ap-
proximants, and the rates of convergence of rationals to reals. The
number we study was found by the French mathematician Joseph
Liouville (1809-1882); it is
1/108 + 1710 + 1/10% + - 4 1/10% -+
= (.11000100000000000000000160 . .. 0001000. . ..
" The 5th 1 is positioned in the 120th place.

i

kY

Corollary 3.3.15 tells us that the nth convergent pn/g¢n of the real
number R is closer to R than 1/¢2. Theorem 4.3.24 tells us that, for
square roots, vk, we can improve on this and find convergents that
are closer to vk than 1/2¢2. In fact, while the proof is a bit beyond
us, the truth of the matter is that given any real number R, there
is a rational number p/q closer to R than 1/+/5¢%. Furthermore, the
constant +/5 cannot be improved upon because of our old friend, the
golden mean, ¢. The following theorem says what we mean.

Theorem 4.4.14

1. Given any real number R, there is a rational number p/g such
that |R —p/q| < 1/(v/5¢%). _

2. Let k > /5. Given any positive integer g, 1o — p/q| > 1/kg*
for all rational numbers p/q. : o

Part (2) of the theorem tells us that the speed of convergence to
¢ by fractions is necessarily restrained. This type of restraint holds
for all algebraic numbers. As an example, we show that for v/2 we
may state the constraint like this.

Theorem 4.4.15 Given any positive integer q, |vV2 — p/q| > 1/3¢°,
for all rational numbers p/q.

Proof For g =1 the theorem holds right away because p may be 1
or 2 and, in either case, |v/2 — p/q| > 1/3. Now if ¢ > 1, then let us
assume, for the sake of being perverse, that |[p/g—+/2| € 1/3¢%. Thus
p/g < V2 + (1/3¢%) for some ¢. Because we know that v/2 < 10/7
and since ¢ > 1, we have p/q < 10/7+1/12. So we have p/g++v2 <
10/7+10/7+1/12 < 3. Now

IP*/¢* — 2| = (p/a — V) (p/g + V2)} < 1/3¢> x 8 =1/%.

gk, OAVCALLA L IR VLR L AL R LR Vil fridtch Tt ot o g

ﬁrmﬂm.mogq i 2¢%| < 1. Since p and ¢ are natural numbers, it
follows that p*> — 2¢° = 0 and so p/g = /2. But this cannot be
because V2 is irrational. So [v2 —pjgl > 1/3¢%. |

Here is how the rate of convergence may be governed for general
algebraic numbers.

Theorem 4.4.16 (Liouville) Let 2 be an algebraic number of degree

n > 1 and let Ty = Pm/gm be o sequence of rational numbers SMH.
ﬁmﬁﬁ.g.ﬂew.%@mﬁ?ﬂm sufficiently large M, |z~ pm Jam| > 1/ @

for all gm > M.

Proof Suppose that z is a solution to the polynomial equation
F(@) = apa™ + Qa4+ asz* + a3z + ag = 0. Then
Flrm) /(P — 2) = (F(rm) = F(2)/ (rm — 2) =
an(rit 2z 4 P22+ 2+
an 1 (P2 4l 4+ T R
a3{r2, + Tz + 28) + aa(rm + 2) + a1
Letting m be such that iz — Tm| < 1, we may say that, for suffi-
ciently large m, |
F(rm) [ (rm — 2) < nlani(l2] + 1> + (n = Dlan-a|(12] + 1y
+3lag|(j2] + 1D? + 2lag|(2] + 1) + |aa} = M.
Let gm > M. Then |z — rm| > |f(rm)l/M > |f{rm)l/gm-

Now |
| F ()] = |(@nPD, + Gneci Bl m & 2+~ 4 @1Pm@  + Godm)/Grml-

Note that 7., cannot be a solution to f(z) = 0 because if it were we
could factor out (z — 7n) and so z would necessarily be of wmmmm.u
degree. Hence. f(rm) # 0. Furthermore, the mumerator of this
fraction is an integer so it must be at least 1. We conclude that
2 — il > (1/gm)(L/ ) = 1/dm™- 0

Using his theorem, Loiuville constructed & transcendental num-
ber. Notice that its decimal expansion is characterized by rapidly
increasing stretches of zeros of length ml.

Theorem 4.4.17 The number z = 110" +1/10%+.--+1 /107 4
is transcendental.
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Proof Let rm = pr/gm = 1/10% +1/10% 4. .. 41 /1™ = P /10™,
Then |2 —rpm| < (10)(1/10¢™+1"). Now if z is an algebraic number of
degree n, then Liouville’s theorem says that [z — 1) > 1/10(v+1)m!
for sufficiently large m. So

H.\HOA;%MV..S_ < GOXH\HOAS._.HVJ - H\HD~3+$_§H,
; .
But this is false for m > n, so z is transcendental. O

- Now that we have seen that the rate of convergence of the contin-
ued fraction to an algebraic number is restrained, it makes sense to
explore the entries in the continued fraction expansion. For quadratic
numbers, the entries are periodic. It has been theorized, but not
proved, that the entries are bounded for all algebraic numbers. Cer-
tainly bounded entries are consistent with a restrained rate of con-
vergence. We shall note that the continued fraction expansion for
some known transcendental numbers, in particular' those based on
the number e, are unbounded. Further we recall from Section 3.3
the dramatic changes in the entries of the expansion of 7; the nurm-
ber 292 is the 5th entry in the continued fraction expansion. We shall
leave this notion of restrained versus erratic behavior of continued
fraction expansions for a project (Project 5.21).

Let us now open the flood gates of the transcendental dam. As
mentioned in the introduction to Section 4.4, Hilbert’s seventh prob-
lem was solved by Gelfond. But not only did Gelond show that
the number 2v2 ig transcendental, he proved that a whole class of
numbers like 2V2 is transcendental.

Theorem 4.4.18 (Gelfond) The number 2% is transcendental if z is
algebraic (not 0 or 1) and y is irrational and algebraic (it may be
complex).

Example 4.4.19 :

- (a) Consider 10'/2. This number is irrational because if 101/2 =
p/q, then ¢® = 10p®. This is an impossibility because 10p? has, in its
prime factorization, an odd number of 25 and 5s while g2 cannot. Of
course, we know this number to be root constructible; after all, it is

V10.

- (b) Consider 10¥2. This number is transcendental by Theorem
4418,

.. (c¢) Consider 101962 This number is 2, by definition. m
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Theorem 4.4.20 If z is o netural number that is not a power of 10,
then logig = is transcendental.

-Proof Let y = log;y . Suppose that y is not transcendental. Since
z is not a power of 10, y cannot be rational. We leave the proof
of this as an exercise. Thus y is irrational and algebraic. It follows
from Theorem 4.4.18 that 10¥ is transcendental. But z = 10% and z
is a natural number. This contradiction tells us that y = log;qx is
transcendental. O

So we have uncovered a whole new line of transcendental mim-
bers; logg z for natural numbers © that are not powers of 10. So, for
exarople, log2 = 0.301029995664 . . ., and log3 = 0.47712125472...
are transcendental.

But the theorem that opens up the treasure chest of transcen-

dentals is as follows.

Theorem 4.4.21 If z £ 0 is an algebraic (it may be complex) num-
ber, then & is transcendental.

As in the case of Gelfond’s theorem, the proof is well beyond this
book; it can be found in advanced books on number theory.

Let us recall some facts about the functions €%, cosz and sinx
that we have picked up in a calculus course. 'We let z represent a
complex number and z represent a real number.

() f=1+z4+22/A4+23/31+ .+ nl 4.

(i) cosw=1—22/21+2%/41 —28/61 + .-+ (—1)"z/(2n)! + - -
(ili) sinz = z—2/314+25/5!—z7/Tl+ - +(=1)"z?" 1/ (2n4-1)1+- - -
(iv) e =cosz +isinz

Theorem 4.4.22

1. Let x be an algebraic number. If = # 0, then cosxz is a fran-
scendental number. If ¢ # 1, then cos™}(z) s transcendental.

2. If ¢ # 0, then € transcendental. If z # 1, then In(z) is tran-
scendental. |
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Proof If cosz were algebraic so, too, would isinz be algebraic.
Then their sum would be algebraic. But we know that e = cosz +
- isinz and since z is an algebraic number and z # 0, Theorem 4.4.21
- tells us that &’ is transcendental. This contradiction establishes that
cosx is transcendental. If cos™!(z) = y were algebraic and z # 1
© thewy = 0 and cosy = 7 is transcendental. But x was assumed to be
+ algebraic, so this contradiction proves that cos™*(z) is transcendental
- if z # 1. We leave the rest of the proof as an exercise. 0

Theorem 4.4.23 €" is transcendental.

Proof We know that ¢ = cogm-HisinT = ~1,80 e = (1)’ = 2
and " = 47%, Since 1 is algebraic it follows. from Theorem 4.4.18
that i™% is transcendental: g

Example 4.4.24 . , ,
Here are examples of transcendental numbers. We can display
most of these with a hand calculator. :

(8) cos(v/2) = 0.155943694765 . ..

(b) cos™1(4/5) = 0.643501108793. ..

(¢) €™ = 23.1406926328 ...

(d) In(¥2) = 0.231049060187 . ..

(e) i* = 0.207879576350761908546955 . ... . %

We have beexi flirting with complex numbers in the past two
thecrerns and part (¢€) of the last example. In elementary algebra we
have learned about adding, subtracting; rhultiplying, and dividing
complex numbers, but raising complex numbers to complex powers
belongs in an advanced course. This would be a good time to make
plans to take such a course. Making sense of numbers such as * is
actually a complex task—no pun intended.

It looks as though we cah prove that most anything is transcen-
amﬁ&&. But there are many elementary numbers that, unbelievably,
are not understood at all. Not only have the following numbers not
been proved to be transcendental, it is not even known whether they
are irrational. If you can believe this, they might be rational num-
bers. Here are scme exarmples.
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Example 4.4.25
Tt is not known whether the following numbers are rational, arith-
metic, algebraic, or transcendental.
T+e wxe, 7w, 25, 2% ", €° o

Since e and the trigonometric functions of sine and cosine offer
a power series representation, we can horme in on a tramscendental
number with as great an accuracy as we wish. We need not be limited
to the decimal expansion on our caculator.

Example 4.4.26
We know that cos(1) is transcendental. Now

cosz =1—22/2 +z*/4 + - - + (=12 2n)l -

The calculator tells us that cos(1) = 0.540302305868 . ... The series
télls us that

cos(1) =1—1/2'+1/41+ -+ (-1)"/(2n)l +---.

If we want the series for cog(1) to 20-place accuracy, we need only go
out 12 places because 1/22! = 8.9 x 10722, This is feasible. L]

$While we have listed lots of exotic transcendental numbers, none
of them has a decimal pattern that can be remembered. Here is one
that does. The decirnal built from the counting numbers is transcen-
dental.

0.12345678910111213141516171819202122232425 . ..

We finish up our brief look at transcendentals by revisiting = and’
e one last time. The pumber ¢ is the less well known of the two. It is
not an everyday number like 7 is. It is known as the base of the nat-
ural logarithms, and it was born less than 300 years ago. As we have
seen in Theorem 4.4.21, the series &7 is invaluable to us in our geaxrch
for transcendentals. And the exponential function e® is known to
all calculus students and all students of science who study exponen-
tial growth. We have mentioned that e has an unbounded continued
fraction expansion. Incredibly, its expansion follows a pattern.

e=(%1,21,1,41,1,61,1,8,..]

So we may approximate ¢ with fractions to as close as we like.
Also, there are patterned continued fraction expansions based on
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terms using e. Here are two examples; we leave it as an exercise to
find more.

(e~1)/(e+1) =[0;2, 6, 10, 14, 18,.. ]

A -1/ +1)=10:1,8,5,79,..]

We may also approximate e to as great an accuracy as we like
with its series expansion:

e=1+1+1/2+1/314+ - +1/nl+---.
Here is e to 21 places:

e = 2.718281828450045235360 .. . .

Unquestionably, 7 is the most famous number in all of mathe-
matics. It is a most natural of numbers to consider—the ratio of the
circumaference to the diameter of a circle. Not surprisingly, it occurs
in formulas for circular chjects in geometry. We all know them.

C = 27r; C stands for the circumference of a circle with radius r.
A =mr?; A stands for the area of a circle with radius r.

V = (4/3)=r?; V stands for the volume of a sphere with radius r.
S = 4zr?; § stands for the surface area of a sphere with radius r.

But 7 occurs in all fields of mathematics—and in the most unex-
pected places. Here are some examples:

"This truly remarkable fact follows from e** = cosz + isin 2.

nl & (V2rnm"e ™

This is Stirling’s formula, which was mentioned in the exercises of
Section 1.3. It is a good approximation of n! as n gets large. Notice
that this formula relates three interesting numbers: nl, e, and 7.

fle) = e )Vox

This is the definition for the normal distribution, that bell-shaped
curve we see in statistical data. ;
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F(n)/n ~ 6/

Here F'(n) stands for the number of square-free numbers < n. This
approximation becomes very good as n gets large. A square-free
number is a mumber made up of primes raised to the first power.
For example, if n = 10, then the square-free numbers < 10 are
2,3, 5,6, 7, and 10. There are six of them; and 6/10 is close to
6/m2.

As pervasive and fundamental & puinber as  is, it is nearly in-
tractable from a mumerical standpoint. As we have stated, it was
not proved to be irrational until the mid-1700s, and it was not found
to be transcendental until the late 1800s. But it has been recog-
nized and studied for as long as mathematicians have lived. In the
Old Testament, I Kings 7:23 implies that 7 = 3. The Babylonians
around 2000 B.C. thought 7 to be either 3 or 35. Around 1500 B.C.
in the Rhind Papyrus, © = 256/81 ~ 3.16049. Archimedes, around
200 B.C., approximated 7 using a 96-sided regular polygon. He found
m% <7< w,w. Ptolemy, the great astronomer, about 400 years later
approximated = with 377/120. This is correct to four places. In the
third century A.D. the Chinese geometer Liu Hui approximated =
using & 192-sided regular polygon. His estimate was 3.1416. This
estimate was also recorded in the sixth century a.d.by the Hindu
astonomer Aryabhata, in the Aryabhitiya Verse I 28: “Add 4 to
100, multiply by 8, and add 62000. The result is approximately the
circumference of a circle of which the diameter is 20000.” In the
fifth century A.D. the Chinese mathematician Zu Chongzhi found
the approximation of 355/113, which is correct to six places.

Let us begin with a method for approximating # that captures

- the spirit of both Archimedes and Liu Hui. This approximation

involves inscribing regular (k x 2")-gons in a wnit circle. You can
approximate either the area or the circumference of the circle using
larger and larger n. We shall approximate the circumference of by
finding the perimeter of a regular 2"-gon. Figure 4.10 depicts a unit
circle with cemter at . The side of a polygon is depicted by PQ.
The unit segraent OR bisects the ZQOP and is perpendicular to
P(). The point § is the intersection of OR and PQ. Let z denote
the length of PQ. Let h denote the length of OS. Let y denote the
length of PR.
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Lemma 4.4.27 The lengthy =V 9 VA~ 2%

Proof The Pythagorean theorem gives us

Rl =1 =0- 0+
1t follows that . .
F= (- (AP +1-h=2-2h=2-2V1- (@/2) =2-4-a.

Soy = V2 V4—T“ . O

"Theorem 4.4.28 The perimeter of a regular 2™-gon inscribed in o

unit circle s
ALY /\Mi 2

where there are n — 1 twos under the square Toot 5igns.

Proof We proceed by induction on. 7 for the following statement:
P(n): The length of the side of a 2"-gon ipscribed in 2 unit circle

N v

P(2) is true because the side of a square inscribed in a unit circle is

of length v/2.

Suppose P(n) is true. So z\w - /\W +4/2 4+ .-+ +/2is the length of
the side of a regular 2"-gon inscribed in a unit circle where there are
- 1 twos in the expression. Now copsider P(n +1): Lemma 4.4.29

is
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says that the length of the side of a regular polygon with twice the
mumber of sides is V2 — 4 - a,mg_ where

z = /\M - &w +/E+
But this expression is /\M - /\Mm.

9 4 .. ++/2 with n twos. In
order to get the perimeter we simply multiply the length of the side

by 20 0

. +>\w. with © — 1 twos.

Thig theorem shows what we suspected about the mmﬂﬂmbow from

Example 4.3.2 {d): that 2™ x /\w - /\m FV2H V2 converges
to 7 where this expression bas n twos under the square roots.

Corollary 4.4.29 The sequence

{sp}=2"X y2- Y242+ F V2 converges to where the

expression has n twos under the square 0018,

Proof . This follows from Theorem 4.4.30, noting that the expression

msix.,\wsﬁmf_ 24+ V2

when divided by 2 gives the measure for the circumference ofa semi-
cirele of radius 1, which is 7. |

Today we can approximate with an inexpensive calculator to
several places. Many calculators show it as 3.14159265359. This
i accurate to 11 places. In Section 3.3 we looked at its contirued
fraction expansion. [t begins {3;7, 15, 1, 292,. 2

3 7 15 1 292..

3 22 333 355 103993...

p. 01
1 0 1 7 106 113 33102...

K
We see that

1355/113 — 7} < 1/(113)(33102) ~ .000000267,



298 - CHAPTER 4. THE REAL NUMBERS

so this convergent is a very good approximation. Here is the contin-
ned fraction expansion a bit further:

37,15 1,202,1,1,1,2,1,3,1,14,2,1,1,2,2,2, 2,1, 84, 2, )

Unfortunately, the continued fraction expansion does not show a pat-
tern. As we have mentioned, it does show a dramatic jump in size
of entries with 292 in the fourth place. This is an early symptom of
erratic behavior in the rate of convergence of the continued fraction
to 7. This, in turn, is an indication of what we already know; 7 18
not algebraic.

With the aid of formulas, it is possible to calculate 7 to many
places. Around 1600, it was calculated to 35 decimals and around
1700 it was up to 100 decimal places. When % was shown to be
irrational in 1761, the search for more digits could no longer be driven
by the search for a cycling of the digits. Its irrationality meant that
this could not happen. But the lure of 7 to some mathematicians
is inescapable, and more accuracy was calculated. In 1853, William
Shanks calculated 7w to 707 places. It was pretty rough going past
1000 digits until the age of computers. For example, in 1949, 7w was

known to 2037 places and it tock 70 hours of calculation to arrive
st this. In 1961, 100,000 places were found by computer in 9 hours.

And computers have gotten much faster. In 1975, the millionth place
was found. In 1989, the billionth digit was found.

Now that it is possible to find 7 to such epormous accuracy, it is
possible to analyze trends in the occurrence of digits. Yet they appear
to be perfectly random. In 1988 a statistical analysis of the first
29,360,000 digits of m was conducted. The most frequent digit was 4,
which appeared 2,938,787 times, while the least frequent digits was
7, which occurred 2,934,083 times. ‘While, in a random sequence, we
would expect that each digit would occur about 2,936,000 times, this
variation is not at all unreasonable. With 29,360,000 random digits
the chances that there would be a string of nine straight instances
of the same number is 29.36%. Indeed there is one such string:
Nine consecutive Ts occur. As we continue to probe deeper into the
infinity of the expansion, we could argue that there will be strings
of hundreds of the same digit. Indeed, we could argue that any
sequence you would ever want would eventually show up—-just as we
might argue that, given a typing monkey and a word processor and
"an infinite amount of time, the monkey would eventually type the
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Bible word for word (thus indicating that = = 3). It might take a
while, though.

* Here is a listing of the digits up to the first 0, which, surprisingly,
does not occur until the thirty-second decimal place:

o= 3.14159265358979323846264338327950. . ...

It’s only right that this famous number, 7, that has no pattern
to its decimal expansion and no pattern to its continued fraction ex-
pansion can be built up through infinite additions and infinite mul-
tiplications with some of the most beautiful and intriguing patterns
in all of mathematics. We conclude the book with some of these
magnificent formulas.

The first formula for 7 was found by Francois Viete (1540—1603)
the father of modern algebra. It is one of many strange and fasci-
nating equalities.

1. ofm = /172 x 4/1/2+1/2/1/2 %
/\M\\mi\w,:\mi\f\ﬁ X o

In 1699, 7 was calculated to 71 decimal places using the formula
2. 7=2/3(1-1/(3x3)+1/(3 %5)—1/(83x T)+1/(8*x9)—---).

With the invention of calculus in the 1600s, several formmulas were
invented. They were all approximations of infinite processes, such
as infinite series or infinite products. Here are some of the more
beautiful formulas involving expressions with .

3. mfd=1-1/3+1/5-1/T+1/9—~"-
4, 7/ 4=1+1/3-1/5—1/T+1/9+1/11-1/13—1/15+-
5. m2/6=1-+1/22+1/82+1/4 4
728 =1+1/3+1/52 + 1T+ -
72)12 =1 —1/2% 4 1/32 —1/8 +- -
?lmv\pup\ﬁmxmx&im\ﬁxmxmvlw\ax,Nval.

. n2/6 = 22/(22~1)x 3%/ (82— 1) x 54/ (31} x-- xp? (PP =1) %,
where p is a prime.

q e

o o
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EXERCISES

1. Show that the following sets, .5, are oossam_gm by displaying a
r& function from S into N.

{a) S'is the set of odd numbers (both negative and positive).
(b) S is the set of integer lattice points.
(c) S is the set of rational lattice points.

. 2. Using the ?ﬂcﬁowm R from Example 4.4.3 and g from HWmonB
4.4.4, mﬁa mmsv for ﬂp@ momoégm Wwaﬂoam

owv z =3/ 7

(b) == —11/16

(c) z=105/13

(d) Is there a natural number y for which there is no z such
that g(z) = y7 Explain.

© 3. Using functions I and g from Theorem 4.4.8, find glz) for the
~ following algebraic mumbers.”
(a) The two solutions of 2% + Tz +4=0
(b) The smallest real solution for z° + 8x* ~ 32% +13 =0
(c) The largest solution to 2% —~ 32% + 24+ 2=10

Tw The third smallest real solution for z’ — ma — 525 + 323 —
19z ~6=0

(e) Find natural numbers y such that there is no z for which
9(z) = y.

4. Given that 0.1234567891011 ... is transcendental, what can you °

say about

(s) 17.181920212223.

(b) any number that begins with a natural number n and, fol-
lowing the decimal point, has a decimal expansion consist-
ing of the string of successive digits of the natural numbers
that follow n? Give a reason for your answer.
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5. Let y = loggx. Show that if z is not a power of 10, then y
cannot be rational.

6. Prove that if m and n are natural numbers, then ;\m)\m is
transcendental.

7. Show that if o is an acute angle of a Pythagorean triangle, then
cos v is transcendental.

8. Complete the proof of Theorem 4.4.22.

(a) If 2 # 0 is an algebraic number, then € is transcendental.

{(b) If £ # 1 is an algebraic number, then In{z) is transcen-
dental.

9. Using Theorem 4.4.23, prove that 7 is transcendental.
10. Show that the following numbers are transcendental:
(a) V7

(b} iV
(c) &7

" 11. Find the ratio of the number of square-free numbers < n to n,

where n is

(a) 100
(b) 1000
(c) How close to 6/72 is the ratio becoming?

12. Look for other patterned continued fraction expansions for terms
made from e; for example, Ye.

13. See how accurate the following terms are to 7.
(a) 992/(2206+/2)

(b) (63/25)(17 + 15vB)/(7 + 15v/5)
(¢) ¥/97+192/22




