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components of X that are different from P and intersect C; each of them necessarily
lies in C, so that

C=PUQ.

Because X is locally path connected, each path component of X is open in X. There-
fore, P (which is a path component) and Q (which is a union of path components)
are open in X, so they constitute a separation of C. This contradicts the fact that C is
connected. |

Exercises

What are the components and path components of R;? What are the continuous
maps f : R — Ry?

2. (a) What are the components and path components of R? (in the product topol-

ogy)?
(b) Consider R® in the uniform topology. Show that x and y lie in the same
component of R” if and only if the sequence

X—y= (X1~ Yy1,% —Y2,...)

is bounded. [Hint: 1t suffices to consider the case where y = 0.}

(c) Give R“ the box topology. Show that x and y lie in the same component
of R if and only if the sequence x —y is “eventually zero.” [Hint: If x —y is
not eventually zero, show there is homeomorphism & of R® with itself such
that 2 (x) is bounded and A(y) is unbounded.]

. Show that the ordered square is locally connected but not locally path connected.
What are the path components of this space?

. Let X be locally path connected. Show that every connected open set in X is
path connected.

. Let X denote the rational points of the interval [0, 1] x 0 of R2. Let T denote the
union of all line segments joining the point p = 0 x 1 to points of X.

(a) Show that T is path connected, but is locally connected only at the point p.
(b) Find a subset of R? that is path connected but is locally connected at none
of its points.

. A space X is said to be weakly locally connected at x if for every neighbor-
bood U of x, there is a connected subspace of X contained in U that contairis
a neighborhood of x. Show that if X is weakly locally connected at each of its
points, then X is locally connected. [Hint: Show that components of open sets
are open.]

Consider the “infinite broom™ X pictured in Figure 25.1. Show that X is not lo-

cally connected at p, but is weakly locally connected at p. [Hint: Any connected
neighborhood of p must contain all the points a;.]
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8. Let p : X — Y be a quotient map. Show that if X is locally connected, then ¥
is locally connected. [Hint: If C is a component of the open set U of ¥, show
that p~1(C) is a union of components of p~*(U).]

9. Let G be a topological group; let C be the component of G containing the identity
element e. Show that C is a normal subgroup of G. [Hint: If x € G, then xC is
the component of G containing x.]

10. Let X be a space. Let us define x ~ y if there is no separation X = AU B of X

into disjoint open sets such that x € Aand y € B.

(a) Show this relation is an equivalence relation. The equivalence classes are
called the quasicomponents of X.

(b) Show that each component of X lies in a quasicomponent of X, and that
the components and quasicomponents of X are the same if X is locally con-
nected.

(¢) Let K denote the set {1/n | n € Z;} and let —K denote the set {—1/n | n €
Z..}. Determine the components, path components, and quasicomponents of
the following subspaces of R%:

A= (K x[0,1DU{0x0}U{0x1}.
B =AU(0,1] x {O].
C = (K x[0, 1)U (=K x[-1,0D U ([0, 1] x =K)U ([~1, 0] x K).

§26 . Compact Spaces

The notion of compactness is not nearly so natural as that of connectedness. From the
beginnings of topology, it was clear that the closed interval [a, b] of the real line had
a certain property that was crucial for proving such theorems as the maximum value
theorem and the uniform continuity theorem. But for a long time, it was not clear
how this property should be formulated for an arbitrary topological space. It used to
be thought that the crucial property of [a, b] was the fact that every infinite subset
of [a, b] has a limit point, and this property was the one dignified with the name of
compactness. Later, mathematicians realized that this formulation does not lie at the
heart of the matter, but rather that a stronger formulation, in terms of open coverings
of the space, is more central. The latter formulation is what we now call compactness.
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1t is not as natural or intuitive as the former; some familiarity with it is needed before
its usefulness becomes apparent.

Definition. A collection # of subsets of a space X is said to cover X, or to be a
covering of X, if the union of the elements of 4 is equal to X. Itis called an open
cavering of X if its elements are open subsets of X.

Definition. A space X is said to be compact if every open covering o of X contains
a finite subcollection that also covers X.

EXAMPLE 1.  The real line R is not compact, for the covering of R by open intervals
A={nn+2)|nel}

contains no finite subcollection that covers R.

EXAMPLE 2.  The following subspace of R is compact:
X ={0)u{l/nlneZyl).

Given an open covering + of X, there is an element U of »# containing 0. The set U
contains all but finitely many of the points 1/n; choose, for each point of X notin U, an
element of 4 containing it. The collection consisting of these elements of s, along with
the element U, is a finite subcollection of # that covers X.

EXAMPLE 3.  Any space X containing only finitely many points is necessarily compact,
because in this case every open covering of X is finite. .

EXAMPLE 4. The interval (0, 1] is not compact; the open covering

A= {(1/n,1]1neZy)

contains no finite subcollection covering (0, 1]. Nor is the interval (0, 1) compact; the
same argument applies. On the other hand, the interval [0, 1] is compact; you are probably
already familiar with this fact from analysis. In any case, we shall prove it shortly.

In general, it takes some effort to decide whether a given space is compact or
not. First we shall prove some general theorems that show us how to construct new
compact spaces out of existing ones. Then in the next section we shall show certain
specific spaces are compact. These spaces include all closed intervals in the real line,
and all closed and bounded subsets of R".

Let us first prove some facts about subspaces. If ¥ is a subspace of X, a collec-
tion s of subsets of X is said to cover Y if the union of its elements contains Y.

Lemma26.1. Let Y be a subspace of X. Then Y is compact if and only if every
covering of Y by sets open in X contains a finite subcollection covering Y .
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Proof. Suppose that ¥ is compact and #4 = {Ay}aey is a covering of Y by sets open
in X. Then the collection

{AyNYjael}
is a covering of Y by sets open in ¥’; hence a finite subcollection
{Ag,NY, ..., Ay, NY}

covers Y. Then {Aq;, ..., Ag,}is2 subcollection of s that covers Y.

Conversely, suppose the given condition holds; we wish to prove ¥ compact. Let
A’ = {AL} be a covering of Y by sets open in ¥. For each a, choose a set A, open
in X such that

Al = AgNY.
The collection # = {A,} is a covering of ¥ by sets open in X. By hypothesis, some
finite subcollection {Ag, ..., Aa,} covers ¥. Then {Aﬁxl, ..., A}, }is a subcollection
of A’ that covers Y. ’ =

Theorem 26.2. Every closed subspace of a compact space is compact.

Proof Let Y. be a closed subspace of the compact space X. Given a covering A of ¥
by sets open in X, let us form an open covering B of X by adjoining to 4 the single
open set X — Y, that is,

B=AUX =Y}

Some finite subcollection of B covers X. If this subcollection contains the set X — Y,
discard X — ¥; otherwise, leave the subcollection alone. The resulting collection is a
finite subcollection of +# that covers Y. - ]

Theorem 26.3. Every compact subspace of a Hausdorff space is closed.

Proof. Let Y be a compact subspace of the Hausdorff space X. We shall prove that
X ~ Y is open, so that Y is closed.

Let xo be a point of X — Y. We show there is a neighborhood of x that is disjoint
from Y-, For each point y of ¥, let us choose disjoint neighborhoods Uy and V), of the
points xq and y, respectively (using the Hausdorff condition). The collection {V, | y €
Y} is a covering of ¥ by sets open in X; therefore, finitely many of them Vy,, ..., Vi
cover Y. The open set '

V=V, U---UV,
contains Y, and it is disjoint from the open set
U=Uy,N:--NU,,

formed by taking the intersection of the corresponding neighborhoods of xo. For if z
is a point of V, then z € Vy, for some i, hence z ¢ Uy, andso z ¢ U. See Figure 26.1.
Then U is a neighborhood of xq disjoint from V', as desired. B
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Figure 26.1

The statement we proved in the course of the preceding proof will be useful to us
later, so we repeat it here for reference purposes:

Lemma 26.4. IfY is a compact subspace of the Hausdorff space X and xg is not iny,
then there exist disjoint open sets U and V of X containing xo and Y, respectively.

EXAMPLE 5.  Once we prove that the interval {a, b} in R is compact, it follows from
Theorem 26.2 that any closed subspace of [a, b] is compact. On the other hand, it follows

from Theorem 26.3 that the intervals (@, b] and (a, b) in R cannot be compact (which we

knew already) because they are not closed in the Hausdorff space R.

EXAMPLE 6.  One needs the Hausdorff condition in.the hypothesis of Theorem 26.3.
Consider, for example, the finite complement topology on the real line. The only proper
subsets of R that are closed in this topology are the finite sets. But every subset of Ris
compact in this topology, as you can check.

Theorem 26.5. The image of a compact space under a continuous map is compact.

Proof. Let f : X — Y be continuous; let X be compact. Let A be a covering of the
set f(X) by sets open in Y. The collection

(F HA) | A e A

is a collection of sets covering X; these sets are open in X because f is continuous.
Hence finitely many of them, say

FYAD, ..., £ AR,

cover X. Then the sets A1, ..., A, cover f(X).
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~ One important use of the preceding theorem is as a tool for verifying that a map is
a homeomorphism:

Theorem 26.6. Let f : X — Y be a bijectivé continuous function. If X is compact
and Y is Hausdorff, then f is a homeomorphis.

Proof. We shall prove that images of closed sets of X under f are closed in Y'; this
will prove continuity of the map f~*. If A is closed in X, then A is compact, by
Theorem 26.2. Therefore, by the theorem just proved, f(A) is compact. Since Y is
Hausdorff, f(A) is closed in Y, by Theorem 26.3. B

Theorem 26.7. The produci of finitely many compact spaces is compact.

Proof. We shall prove that the product of two compact spaces is comipact; the theo-
rem follows by induction for any finite product.

Step 1. Suppose that we are given spaces X and ¥, with ¥ compact. Suppose that
xo is a point of X, and N is an open set of X x ¥ containing the “slice” xg x Y of
X x Y. We prove the following:

There is a neighborhood W of xo in X such that N contains the entire set
W x Y. , -
The set W x Y is often called a fube about xo x Y.

First let us cover xg X Y by basis elements U x V (for the topology of X x7Y)
lying in N. The space xo x Y is coinpact, being homeomorphic to ¥. Therefore, we
can cover xg x Y by finitely many such basis elerhents

Uy x Vi, ..., Uy X V.

(We assume that each of the basis elements U; x V; actually intersects xg x Y, since
otherwise that basis element would be superfluous; we could discard it from the finite
collection and still have a covering of xp x ¥.) Define

W=UnN---NU,

The set W is open, and it contains xo because each set U; x V; intersects xo X Y.

We assert that the sets U; x V;, which were chosen to cover the slice xp X Y,
actually cover the tube W x Y. Let x x y be a point of W x Y. Consider the point
xp x y of the slice xg x Y having the same y-coordinate as this point. Now xg x y
belongs to U; x V; forsome i,sothaty € V;. Butx € U forevery j (because x € W).
Therefore, we have x x y € U; x V;, as desired. :

Since all the sets U; x V; lie in N, and since théy cover W x Y, thetube W x Y
lies in N also. See Figure 26.2. B

Step 2. Now we prove the theorem. Let X and Y be comipact spaces. Let 4
be an open covering of X x Y. Given xo € X, the slice xg x Y is compact and
may therefore be covered by finitely many elements Ay, ..., Ap of A, Their union
N = A;U--UA,, is an open set containing xo x ¥; by Step 1, the open set N contains
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Figure 26.2

a tube W x Y-about xo x ¥, where W is openin X. Then W x Y is covered by finitely
maty elements Ag, ..., Ay, of s.

Thus, for each x in X, we cari choose a neighborhood Wy of x such that the tube
W, X Y can be covered by finitely many elements of +. The collection of all the
neighborhoods W, is an opeén covering of X; therefore by compactness of X, there
exists a finite subcollection

(Wi, ..., Wi}
covering X. The union of the tubes

Wi xY,...,WexY

is all of X x Y; since each may be covered by finitely many elements of »A, so may

X x Y be covered. B

The statement pro’véd in Step 1 of the preceding proof will be useful to us later, so
we repeat it here as a lemma, for reference purposes:

Lemma 26.8 (The tube lemma). Consider the product space X x Y, where Y is
compact. If N is an open set of X x Y containing the slice xo x ¥ of X x ¥, then N
contains some tube W x Y about xg x Y, where W is a neighborhood of xp in X.

EXAMPLE 7.. The tube lemma is certainly not true if ¥ is not compact. For example, let
Y be the y-axis in R?, and let

N={xxy x| <1/G*+ D}

Then NV is an open set containing the set 0 x R, but it contains no tube about 0 x R. Itis
illustrated in Figure 26.3.
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Figure 26.3
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There is an obvious question to ask at this point. Is the product of infinitely many
compact spaces compact? One would hope that the answer is “yes,” and in fact it is.
The result is important (and difficult) enough to be called by the name of the man who
proved it; it is called the Tychonoff theorem. ‘

In proving the fact that a cartesian product of connected spaces is connected, one
proves it first for finite products and derives the general case from that. In proving
that cartesian products of compact spaces are compact, however, there is no way to
go directly from finite products to infinite ones. The infinite case demands a new
approach, and the proof is a difficult one. Because of its difficulty, and also to avoid
losing the main thread of our discussion in this chapter, we have decided to postpone it
until Jater. However, you can study it now if you wish; the section in which it is proved
(§37) can be studied immediately after this section without causing any disruption in
continuity. )

There is one final criterion for a space to be compact, a criterion that is formulated
in terms of closed sets rather than open sets. It does not look very natural nor very
useful at first glance, but it in fact proves to be useful on a number of occasions, First
we make a definition. ‘

Definition. A collection C of subsets of X is said to have the finite intersection
property if for every finite subcollection
{Cl:---ycn} )

of C, the intersection C1 N - - - N C,, is nonempty.
Theorem 26.9. Let X be a topological space. Then X is compact if and only if

for every collection C of closed sets in X having the finite intersection property, the
intersection (\oee C of all the elements of C is nonempty. )
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Proof. Given a collection 4 of subsets of X, let
=[X-A|A€en

be the collection of their complements. Then the following statements hold:
(1) + is a collection of open sets if and orily if € is a collection of closed sets.

(2) The collection A covers X if and only if the mtersectxon {Necee C of all the
elements of C is empty.
(3) The finite subcollection {A1, ..., Ay} of 4 covers X if and only if the intersec-
tion of the corresponding elements C; = X — A; of C is empty.
The ﬁrst statement is trivial, while the second and third follow from DeMorgan’s law:
X~ (| 40) = (X - Aa).
ael aeJ
The proof of the theorem now proceeds in two easy steps: taking the contraposmve
(of the theorem), and then the complement (of the sets)!
The statement that X is compact is equivalent to saying: “Given any collection 4
of open subsets of X, if 4 covers X, then some finite subcollection of A4 covers X
This statement is equivalent to its contrapositive, which is the following: “Given any
collection »4 of open sets, if no finite subcollection of 4 covers X, thén s does not
cover X.” Letting C be, as earlier, the collection {X — A | A € »} and applying
(1)~(3), we see that this statement is in turn equivalent to the following: “Given any
collection C of closed sets, if every finite intersection of elements of @ is nonempty,
then the intersection of all the elements of C is nonempty.” This is Just the condition
of our theorem., B

A special case of this theorem occurs when we have a nested sequence C; O C2 D
- D Cp D Chap D ... of closed sets in a compact space X. If each of the sets C, is
nonempty, then the collectlon C = {Cplnez, automatically has the finite intersection
property. Then the intersection
M S

neZ+

is nonempty.

We shall use the closed set criterion for compactness in the next section to prove
the uncountability of the set of real numbers, in Chapter 5 when we prove the Ty-
chonoff theorem, and again in Chapter 8 when we prove the Baire category theorem.

Exercises

1. (a) Let 7 and 7’ be two topologies on the set X; suppose that 7' D 7. What
does compactness of X under one of these topologies imply about compact-
ness under the other?- ' -

(b) Show that if X is compact Hausdorff under both 7 and T, then either T~
and 7/ are equal or they are not comparable. B ‘
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(a) Show that in the finite complement topology on R, every subspace is com-
pact.

(b) If R has the topology consisting of all sets A such that R — A is either
countable or all of R, is [0, 1] a compact subspace?

Show that a finite union of compact subspaces of X is compact.

Show that every compact subspace of a metric space is bounded in that metric

and is closed. Find a metric space in which not every closed bounded subspace

is compact.

Let A and B be disjoint compact subspaces of the Hausdorff space X. Show that

there exist disjoint open sets U and V containing A and B, respectively.

Show that if f : X — Y is continuous, where X is compact and Y is Hausdorff,

then f is a closed map (that is, f carries closed sets to closed sets).

Show that if ¥ is compact, then the projection 773 : X x ¥ — X is a closed map.

Theorem. Letf : X — Y;letY be compact Hausdorff. Then f is continuous
if and only if the graph of f,

Gf={xx f(x)|x€X),

is closed in X x Y. [Hint: If G is closed and V is a neighborhood of f(xg),
then the intersection of G s and X x (¥ — V) is closed. Apply Exercise 7.]
Generalize the tube lemma as follows:

Theorem. Let A and B be subspaces of X and Y, respectively; let N be an open
setin X x Y containing A x B. If A and B are compact, then there exist open
sets U and V in X and Y, respectively, such that

AxBCUxVCN.

(a) Prove the following partial converse to the uniform limit theorem:
Theorem. Let f, : X — R be a sequence of continuous functions, with
fn(x) = f(x) foreachx € X. If f is continuous, and if the sequence f, is
monotone increasing, and if X is compact, then the convergence is uniform.
[We say that f,, is monotone increasing if f,(x) < fu41(x) for all n and x.]

(b) Give examples to show that this theorem fails if you delete the requirement
that X be compact, or if you delete the requirement that the sequence be
monotone. [Hint: See the exercises of §21.]

Theorem. Let X be a compact Hausdorff space. Let 4 be a collection of closed

connected subsets of X that is simply ordered by proper inclusion. Then

Y = (‘]A
AcA

is connected. [Hint: If C U D is a separation of ¥, choose disjoint open sets U
and V of X containing C and D, respectively, and show that

(a-w@wuwy

Aeh




172 Connectedness and Compactness

is not empty.]

12. Let p : X — Y be a closed continuous surjective map such that p~1({y}) is
compact, for each y € ¥. (Such a map is called a perfect map.) Show thatif ¥
is compact, then X is compact. [Hint: If U is an open set containing p~({y}),
there is a neighborhood W of y such that p~1(W) is contained in U]

13. Let G be a topological group.

(a) Let A and B be subspaces of G. If A is closed and B is compact, show A - B
is closed. [Hint: If cisnotin A - B, find a neighborhood W of ¢ such that
W - B~1is disjoint from A.]

(b) Let H be a subgroup of G;let p : G — G/H be the quotient map. If H is
compact, show that p is a closed map.

(c) Let H be a compact subgroup of G. Show that if G /H is compact, then G
is compact.

§27 Compact Subspaces of the Real Line

The theorems of the preceding section enable us to construct new compact spaces from
existing ones, but in order to get very far we have to find some compact spaces to start
with. The natural place to begin is the real line; we shall prove that every closed inter-
val in R is compact. Applications include the extreme value theorem and the uniform
continuity theorem of calculus, suitably generalized. We also give a characterization

of all compact subspaces of R", and a proof of the uncountability of the set of real
numbers. '

It turns out that in order to prove every closed interval in R is compact, we need
only one of the order properties of the real line—the least upper bound property. We
shall prove the theorem using only this hypothesis; then it will apply not only to the
real line, but to well-ordered sets and other ordered sets as well.

Theorem 27.1. Let X be a simply ordered set having the least upper bound property.
In the order topology, each closed interval in X is compact.

Proof. Step 1. Givena < b, let A be a covering of [a, b] by sets open in [a, b] in the
subspace topology (which is the same as the order topology). We wish to prove the
existence of a finite subcollection of /4 covering [a, b]. First we prove the following:
If x is a point of [a, b] different from b, then there is a point y > x of [a, b] such that
the interval [x, y] can be covered by at most two elements of A.

If x has an immediate successor in X, let y be this immediate successor. Then
[x, y] consists of the two points x and y, so that it can be covered by at most two
elements of 4. If x has no immediate successor in X, choose an element A of A
containing x. Because x # b and A is open, A contains an interval of the form [x, ¢),
for some c in [a, b]. Choose a point y in (x, ¢); then the interval [x, y] is covered by
the single element A of A.
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Step 2. Let C be the set of all points y > a of {a, b] such that the interval [a, y]
can be covered by finitely many elements of 4. Applying Step 1 to the case x = a,
we see that there exists at least one such y, so C is not empty. Let ¢ be the least upper
bound of the set C; thena < ¢ < b.

Step 3. We show that ¢ belongs to C; that is, we show that the interval [a, c] can
be covered by finitely many elements of 4. Choose an element A of # containing ¢;
since A is open, it contains an interval of the form (d, c] for some d in [a, b]. If ¢ is
not in C, there must be a point z of C lying in the interval (d, c), because otherwise d
would be a smaller upper bound on C than ¢. See Figure 27.1. Since z is in C, the
interval [a, z] can be covered by finitely many, say n, elements of A. Now [z, c] lies
in the single element A of 4, hence [a, ¢] = [a, 2] U [z, c] can be covered by n + 1
elements of #4. Thus ¢ is in C, contrary to assumption.

z yory
& e \ 3 )
T \ g { 'LL- v I
a d c a ¢ b
Figure 27.1 . Figure 27.2

Step 4. Finally, we show that ¢ = b, and our theorem is proved. Suppose that
¢ < b. Applying Step 1 to the case x = ¢, we conclude that there exists a point y > ¢
of {a, b] such that the interval [c, y] can be covered by finitely many elements of #.
See Figure 27.2. We proved in Step 3 that ¢ is in C, so [, ¢] can be covered by finitely
many elements of 4. Therefore, the interval

la, y] = la,c]Ulc, y]
can also be covered by finitely many elements of 4. This means that y is in C, con-
tradicting the fact that ¢ is an upper bound on C. &
Corollary 27.2. Every closed interval in R is compact.
Now we characterize the compact subspaces of R":
Theorem 27.3. A subspace A of R" is compact if and only if it is closed and is
bounded in the euclidean metric d or the square metric p.

Proof. Tt will suffice to consider only the metric p; the inequalities

px,y) <d(x,y) < v/npx,y)

imply that A is bounded under 4 if and only if it is bounded under p.
Suppose that A is compact. Then, by Theorem 26.3, it is closed. Consider the
collection of open sets

{BP(O, m) [ me Z+}:
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whose union is all of R®. Some finite subcollection covers A. It follows that A C
B, (0, M) for some M. Therefore, for any two points x and y of A, we have p(x, y) <
2M. Thus A is bounded under p.

Conversely, suppose that A is closed and bounded under p; suppose that p(x, y) <
N for every pair x, y of points of A. Choose a point xg of A, and let p(xo, 0) = b.
The triangle inequality implies that p(x,0) < N +bforeveryxin A. If P = N +b,
then A is a subset of the cube [—P, P]", which is compact. Being closed, A is also
compact. : B

Students often remember this theorem as stating that the collection of compact
sets in a metric space equals the collection of closed and bounded sets. This statement
is clearly ridiculous as it stands, because the question as to which sets are bounded
depends for its answer on the metric, whereas which sets are compact depends only on
the topology of the space. )

EXAMPLE 1. The unit sphere $”~! and the closed unit ball B" in R" are compact
because they are closed and bounded. The set

A={xx{/x)]0<x <1}
is closed in IR2, but it is not compact because it is not bounded. The set
S = {x x (sin(1/x)) |0 < x < 1}
is bounded in R2, but it is not compact because it is not closed.

Now we prove the extreme value theorem of calculus, in suitably generalized form.

Theorem 27.4 (Extreme value theorem). Let f : X — Y be continuous, where Y
is an ordered set in the order topology. If X is compact, then there exist points ¢ and d
in X such that f(c) < f(x) < f(d) foreveryx € X.

The extreme value theorem of calculus is the special case of this theorem that
occurs when we take X to be a closed interval in R and Y to be R.

Proof. Since f is continuous and X is compact, the set A = f(X) is compact. We
show that A has a largest element M and a smallest element m. Then since m and M
belong to A, we must have m = f(c) and M = f(d) for some points ¢ and d of X.

If A has no largest element, then the collection

{(—00,a) | a € A}

forms an open covering of A. Since A is compact, some finite subcollection

{(__OO: al)’ ey (—OO, an)}

covers A. If a; is the largest of the elements ay, . . . a, then a; belongs to none of these
sets, contrary to the fact that they cover A.
A similar argument shows that A has a smallest element. |
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Now we prove the uniform continuity theorem of calculus. In the process, we
are led to introduce a new notion that will prove to be surprisingly useful, that of a
Lebesgue number for an open covering of a metric space. First, a preliminary notion:

Definition. Let (X, 4) be a metric space; let A be a nonempty subset of X. For each
x € X, we define the distance from x to A by the equation

d(x, A) = inf{d(x,a) | a € A}.

It is easy to show that for fixed A, the function d(x, A) is a continuous function
of x: Given x, y € X, one has the inequalities

d(x, A) <d(x,a) <d(x,y) +d(y,a),
foreach a € A. It follows that
d(x,A) —d(x,y) <infd(y,a) =d(y, A),
so that
dx, A) —d(y, A) < d(x,y).

The same inequality holds with x and y interchanged; continuity of the function
d(x, A) follows.

Now: we introduce the notion of Lebesgue number. Recall that the diamerer of a
bounded subset A of a metric space (X, d) is the number

sup{d{ai, a2) | a1, az € A}.

Lemma 27.5 (The Lebesgue number lemma). Let A be an open covering of the
metric-space (X, d). If X is compact, there is a§ > 0 such that for each subset of X
having diameter less than §, there exists an element of A containing it.

The number § is called a Lebesgue number for the covering #.

Proof. Let 4 be an open covering of X. If X itself is an element of A, then any
positive number is a Lebesgue number for 4. So assume X is not an element of .

Choose a finite subcollection {4, ..., A,} of # that covers X. For each i, set
Ci = X — A;, and define f : X — R by letting f(x) be the average of the numbers
d(x, C;). Thatis,

1 n
fo)=- ;d@, ).

We show that f(x) > Oforall x. Givenx € X, choose i so that x € A;. Then choose €
so the e-neighborhood of x lies in A;. Then d(x, C;) > €, so that f(x) > €/n.
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Since f is continuous, it has a minimum value §; we show that § is our required
Lebesgue number. Let B be a subset of X of diameter less than §. Choose a point xg
of B; then B lies in the §-neighborhood of xg. Now

5 5 f(xO) S d(xO) Cm),

where d(xg, Cp,) is the largest of the numbers d(xg, C;). Then the §-neighborhood
of xp is contained in the element A, = X — C,, of the covering #. B

Definition. A function f from the metric space (X, dx) to the metric space (Y, dy)
is said to be uniformly continuous if given € > 0, there is a § > 0 such that for every
pair of points xg, x1 of X,

dx (x0, x1) < 8 = dy (f(x0), f(x1)) <e.

Theorem 27.6 (Uniform continuity theorem). Let f : X — Y be a continuous
map of the compact metric space (X, dx) to the metric space (Y,dy). Then f is
uniformly continuous.

Proof. Given € > 0, take the open covering of ¥ by balls B(y, €/2) of radius /2.
Let 4 be the open covering of X by the inverse images of these balls under f. Choose 8
to be a Lebesgue number for the covering +A. Then if x; and xp are two points of X
such that dx(x1, x2) < 8, the two-point set {x;, xp} has diameter less than 8, so that
its image {f(x1), f(x2)} lies in some ball B(y, €/2). Then dy(f(x1), f(x2) <€, as
desired. g a

Finally, we prove that the real numbers are uncountable. The interesting thing
about this proof is that it involves no algebra at all—no decimal or binary expansions
of real numbers or the like—just the order properties of R. :

Definition. If X is a space, a point x of X is said to be an isolated point of X if the
one-point set {x} is open in X.

Theorem 27.7. Let X be a nonempty compact Hausdorff space. If X has no isolated
points, then X is uncountable.

Proof. Step 1. We show first that given any nonempty open set U of X and any
point x of X, there exists a nonempty open set V contained in U such that x ¢ V.

Choose a point y of U different from x; this is possible if x is in U because x is not
an jsolated point of X and it is possible if x is not in U simply because U is nonempty.
Now choose disjoint open sets W; and Wa about x and y, respectively. Then the set
V = Wy N U is the desired open set; it is contained in U, it is nonempty because it
contains y, and its closure does not contain x. See 'Figu‘re'27.3.’

Step 2. We show that given f : Z, — X, the function f is not surjective. It
follows that X is uncountable.
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Figure 27.3

Let x, = f(n). Apply Step 1 to the nonempty open set U = X to choose a
nonempty open set V) C X such that V; does not contain x;. In general, given Vi1
open and nonempty, choose V,, to be a nonempty open set such that V,, C V,,—jand V,
does not contain x,. Consider the nested sequence

V1D‘723~'

of nonempty closed sets of X. Because X is compact, there is a point x € () V,, by
Theorem 26.9. Now x cannot equal x, for any n, since x belongs to V, and x, does
not. B8

Corollary 27.8. Every closed interval in R is uncountable.

Exercises

1. Prove that if X is an ordered set in which every closed interval is compact, then X
has the least upper bound property.
2. Let X be a metric space with metric d; let A C X be nonempty.
(a) Show thatd(x, A) = 0Oif and onlyifx € A.
' (b) Show that if A is compact, d(x, A) = d(x, a) for some a € A.
(c) Define the e-neighborhood of A in X to be the set

U(A,e) = {x | d(x, A) < €}

Show that U (A, €) equals the union of the open balls By(a, €) fora € A.
(d) Assume that A is compact; let U be an open set containing A. Show that
some e-neighborhood of A is contained in U.
(e) Show the result in (d) need not hold if A is closed but not compact.

3. Recall that Rx denotes R in the K -topology.
(a) Show that [0, 1] is not compact as a subspace of Rg.
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(b) Show that Rk is connected. [Hint: (—00, 0) and (0, 00) inherit their usual
tapologies as subspaces of Rg.]

(c) Show that Rg is not path connected.

{. Show thata connected metric space having more than one point is uncountable.

5. Let X be a compact Hausdorff space; let {A,} be a countable collection of closed
sets of X. Show that if each set A, has empty interior in X, then the union U A
has empty interior in X. [Hins: Tmitate the proof of Theorem 27.7.]

This is a special case of the Baire category theorem, which we $hall study in

Chapter 8. _ -

6. Let Ag be the closed interval [0, 1]in R. Let A1 be the set obtained from Ag by
deleting its “middle third” (% s %). Let A; be the set obtained from Ay by deleting
its “middle thirds” (1, 3) and (3, $). In general, define A, by the equation

© /1 +3k 243k
An :An—l - U (——371_’ 3" )
k=0

The intersection

C:ﬂAn

nely

is called the Cantor set; it is a subspace of [o, 11.
(a) Show that C is totally disconnected.

(b) Show that C is compact.
(c) Show that each set A, is a union of finitely many disjoint closed intervals of

length 1/3"; and show that the end points of these intervals lie in C.
(d) Show that C has no isolated points.
(¢) Conclude that C is uncountable.

§28 Limit Point Compactness

As indicated when we first mentioned compact sets, there are other formulations of
the notion of compactness that are frequently useful. In this section we introduce
one of them. Weaker in general than compactness, it coincides with compactness for

metrizable spaces.

Definition. A space X is said to be limit point compact if every infinite subset of X
has a limit point. ‘

In some ways this property is more natural and intuitive than that of compactness.
In the early days of topology, it was given the name “compactness,” while the open
covering formulation was called “bicompactness.” Later, the word “compact” was
shifted to apply to the open covering definition, leaving this one to search for a new

o

name. It still has not found a name on which everyone agrees. On historical grounds,
some call it “Fréchet compactness”; others call it the “Bolzano-Weierstrass property.”
We have invented the term “limit point compactness.” It seems as good a term as any,
at least it describes what the property is about.

Theorem 28.1.  Compactness implies limit point compactness, but not conversely.

Proof. Let X be a compact space. Given a subset A of X, we wish to prove that if A
is infinite, then A has a limit point. We prove the contrapositive—if A has no limit
point, then A must be finite. .

So suppose A has no limit point. Then A contains all its limit points, so that A is
closed. Furthermore, for each a € A we can choose a neighborhood U, of a such that
U, intersects A in the point a alone. The space X is covered by the open set X — A
and the open sets U,; being compact, it can be covered by finitely many of these sets.
Since X — A does not intersect A, and each set Ug contains only one point of A, the

set A must be finite. |

EXAMPLE 1.  Let Y consist of two points; give Y the ‘topology consisting of ¥ and
the empty set. Then the space X = 7.4 x Y is limit point compact, for every nonempty
subset of X has a limit point. It is not compact, for the covering of X by the open sets
U, = {n} x Y has no finite subcollection covering X.

EXAMPLE 2.  Here is a less trivial example. Consider the minimal uncountable well-
ordered set Sq, in the order topology. The space Sq is not compact, since it has no largest
element. However, it is limit point compact: Let A be an infinite subset of Sq. Choose a
subset B of A that is countably infinite. Being countable, the set B has an upper bound b
in Sq; then B is a subset of the interval [ag, b] of Sq, where ap is the smallest element
of Sq. Since Sg has the least upper bound property, the interval [ag, b] is compact. By the
preceding theorem, B has a limit point x in {ag, b]. The point x is also a limit point of A.
Thus Sg is limit point compact.
We now show these two versions of compactness coincide for metrizable spaces;
for this purpose, we introduce yet another version of compactness called sequential

compactness. This result will be used in Chapter 7.

Definition. Let X bea topological space. If (x,) is a sequence of points of X, and if .
' R <hp <+ <A <t

is an increasing sequence of positive integers, then the sequence (y;) defined by setting
y; = Xy, is called a subsequence of the sequence (x,). The space X is said to be
sequentially compact if every sequence of points of X has a convergent subsequence.

*Theorem 28.2. Let X be a metrizable space. Then the following are equivalent:
(1) X is compact.
(2) X is limit point compact.
(3) X is sequentially compact.
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Proof. We have already proved that (1) = (2). To show that (2) = (3), assume
that X is limit point compact. Given a sequence (%) of points of X, consider the set
A = {xn | n € Z)}. If the set A is finite, then there is a point x such that x = x, for
infinitely many values of n. In this case, the sequence (x,) has a subsequence that is
constant, and therefore converges trivially. On the other hand, if A is infinite, then A
has a limit point x. We define a subsequence of (x,) converging to x as follows: First
choose n1 so that

xn, € B(x, D).

Then suppose that the positive integer n; 1 is given. Because the ball B(x, 1/i) inter-
sects A in infinitely many points, we can choose an index n; > ;-1 such that

X, € B(x, 1/0).

Then the subsequence X, , Xny, - .. CONVErges to x.

Finally, we show that (3) => (1). This is the hardest part of the proof.

First, we show that if X is sequentially compact, then the Lebesgue number lemma
holds for X. (This would follow from compactness, but compactness is what we are
trying to prove!) Let 4 be an open covering of X. We assume that there isno § > 0
such that each set of diameter less than & has an element of /4 containing it, and derive
a contradiction.

Our assumption implies in particular that for each positive integer n, there exists a
set of diameter less than 1/ that is not contained in any element of ; let Cy be such a
set. Choose a point x,-€ Cj, foreachn. By hypothesis, some subsequence (xn;) of the
sequence (x,) converges, say to the point a. Now a belongs to some element A of the
collection +; because A is open, we may choose an € > 0 such that B(a,¢) C A. Ifi
is large enough that 1/n; < €/2, then the set Cy, liesin the € /2-neighborhood of xy,; if
i is also chosen large enough that d (x,,;, @) < €/2, then C,, lies in the e-neighborhood
of a. But this means that C,; C A, contrary {0 hypothesis.

Second, we show that if X is sequentially compact, then given € > 0, there exists
a finite covering of X by open e-balls. Once again, we proceed by contradiction.
Assume that there exists an € > 0 such that X cannot be covered by finitely many
e-balls. Construct a sequence of points x, of X as follows: First, choose x; to be any
point of X. Noting that the ball B(x1, €) is not all of X (otherwise X could be covered
by a single e-ball), choose x2 to be a point of X not in B(x1,€). In general, given
X1, ..., Xn, choose x,4+1 to be a point not in the union

B(xi,€)U---UB(xy, €),

using the fact that these balls do not cover X. Note that by construction d (xp+1, Xi) =
e fori = 1,...,n. Therefore, the sequence (x,) can have no convergent subsequence;
in fact, any ball of radius € /2 can contain x, for at most one value of n.

Finally, we show that if X is sequentially compact, then X is compact. Let » be
an open covering of X. Because X is sequentially compact, the open covering s has
a Lebesgue number 8. Let € = §/3; use sequential compactness of X to find a finite
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covering of X by open e-balls. Each of these balls has diameter at most 24/3, so it
lies in an element of 4. Choosing one such element of 4 for each of these ¢-balls, we
obtain a finite subcollection of # that covers X. B

EXAMPLE 3. Recall that Sq denotes the minimal uncountable well-ordered set Sq with
the point 2 adjoined. (In the order topology, 2 is a Limit point of Sg, which is why we
introduced the notation Sgq for Sg U (€2}, back in §10.) It is easy to see that the space So
is not metrizable, for it does not satisfy the sequence lemma: The point € is a limit point
of Sq: but it is not the limit of a sequence of points of Sq, for any sequence of points of Sg
has an upper bound in Sq. The space Sq, on the other hand, does satisfy the sequence
lemma, as you can readily check. Nevertheless, Sg is not metrizable, for it is limit point
compact but not compact.

Exercises

1. Give [0, 1]° the uniform topology. Find an infinite subset of this space that has
no limit point.
2. Show that [0, 1] is not limit point compact as a subspace of Ry.

3. Let X be limit point compact.
(@) If f : X — ¥ is continuous, does it follow that f(X) is limit point compact?
(b) If A is a closed subset of X, does it follow that A is limit point compact?
(¢) If X is a subspace of the Hausdorff space Z, does it follow that X is closed
in Z?7

We comment that it is not in general true that the product of two limit point com-
pact spaces is limit point compact, even if the Hausdorff condition is assumed.
But the examples are fairly sophisticated. See [S-S], Example 112.

4. A space X is said to be countably compact if every countable open covering
of X contains a finite subcollection that covers X. Show that for a T1 space X,
countable compactness is equivalent to limit point compactness. [Hint: If no
ﬁnite subcollection of U, covers X, choose x, ¢ Uy U --- U Uy, for each n.]

5, Show that X is countably compact if and only if every nested sequence C; D
Cy O --- of closed nonempty sets of X has a nonempty intersection.

6. Let (X, d) be a metric space. If f : X — X satisfies the condition

d(f(x), fO)) =d(x,y)

forall x, y € X, then f is called an isontetry of X. Show thatif f isan isometry
and X is compact, then f is bijective and hence a homeomorphism. [Hint: If
a ¢ f(X), choose € so that the e-neighborhood of a is disjoint from f(X). Set
x1 = a, and x, 41 = f(x,) in general. Show that d(xn, xp) > € forn # m.]

7. Let (X, d) be a metric space. If f satisfies the condition

d(f(x), f(») <d(x,y)




182 Connectedness and COMPACLIEss

for all x,y € X with x 3 y, then f is called a shrinking map. If there is a
number o < 1 such that

d(fx), f() < ad(x,y)

for all x, y € X, then f is called a contraction. A fixed point of f is apoint x

such that f(x) = x.

(a) If f is a contraction and X is compact, show f has a unique fixed point.
[Hint: Define f V= fand f ntl - f o f". Consider the intersection A of
the sets A, = f"(X).]

(b) Show more generally thatif f isa shrinking map and X is compact, then f
has a unique fixed point. {Hint: Let A be as before. Given x € A, choose x,
sothatx = f"+1(x,). If ¢ is the limit of some subsequence of the sequence
Y = f"(xn), show thata € A and f (@) = x. Conclude that A = f(A), so
that diam A = 0.] : B

(¢) Let X = [0, 1]. Show that f(x) = x — x2/2 maps X into X and is a
shrinking map that is not a contraction. [Hint: Use the mean-value theorem
of calculus.]

(d) The result in (a) holds if X is a complete metric space, such as R; see the
exercises of.§43. The result in (b) does not: Show that themap f : R —
R given by f(x) = [x + %+ 1)1/2]/2 is a shrinking map that is not a
contraction and has no fixed point.

§29 Local Compactness

In this section we study the notion of local compactness, and we prove the basic the-
orem that any locally compact Hausdorff space can be imbedded in a certain compact
Hausdorff space that is called its one-point compactification.

Definition. A space X is said to be locally compact at x if there is some compact
subspace C of X that contains a neighborhood of x. If X is locally compact at each of

its points, X is said simply to be locally compact.

Note that a compact space is automatically locally compact.

EXAMPLE 1. The real line R is locally compact. The point x lies in some interval (a, b),
which in turn is contained in the compact subspace [a, b]. The subspace Q of rational
numbers is not locally compact, as you can check.

EXAMPLE 2.  The space R is locally compact; the point x lies in some basis element
(a1, b1) X+« X (an, bn), which in turn lies in the compact subspace {a1, b1l X - - X lan, bnl.
The space R” is not locally compact; none of its basis elements are contained in compact

subspaces. For if

B:(al,bl)xv--x(an,b,,)xRx--'xRx~--

were contained in a compact subspace, then its closure
B=la,bilx - x[anbdxRx---
would be compact, which it is not.

EXAMPLE 3.  Every simply ordered set X having the least upper bound property is
locally compact: Given a basis element for X, it is contained in a closed interval in X,

which is compact.

Two of the most well-behaved classes of spaces to deal with in mathematics are the
metrizable spaces and the compact Hausdorff spaces. Such spaces have many useful
properties, which one can use in proving theorems and making constructions and the
like. If a given space is not of one of these types, the next best thing one can hope for is
that it is a subspace of one of these spaces. Of course, a subspace of a metrizable space
is itself metrizable, so one does not get any new spaces in this way. But a subspace of a
compact Hausdorff space need not be compact. Thus arises the question: Under what
conditions is a space homeomorphic with a subspace of a compact Hausdorff space?
We give one answer here. We shall return to this question in Chapter 5 when we study
compactifications in general.

Theorem 29.1. Let X be a space. Then X is locally compact Hausdortf if and only
if there exists a space Y satisfying the following conditions: ‘
(1) X is a subspace of Y. '
(2) ThesetY — X consists of a single point.

(3) Y is a compact Hausdorff space.
IfY and Y’ are two spaces satisfying these conditions, then there is a homeomorphism
of Y with Y that equals the identity map on X.

Proof. Step 1. We first verify uniqueness. Let Y and ¥ ’ be two spaces satisfying
these conditions. Define A : ¥ — Y’ by letting h map the single point pof ¥ — X to
the point g of ¥’ — X, and letting & equal the identity on X. We show that if U is open
in Y, then A(U) is open in Y’. Symmetry then implies that 1 is a homeomorphism.

. First, consider the case where U does not contain p. Then 2(U) = U. Since U is
openin ¥ andis contained in X, it is open in X. Because X is open inY’/, theset U is
also open in Y, as desired.

Second, suppose that U contains p. Since C = Y — U is closed in Y, it is compact
as a subspace of Y. Because C is contained in X, it is a compact subspace of X.
Then because X is a subspace of ¥ /. the space C is also a compact subspace of ¥ ‘
Because Y’ is Hausdorff, C is closed in ¥’, so that A(U) = Y/ — CisopeninY’, as
desired.

Step 2. Now we suppose X is locally compact Hausdorff and construct the space Y.
Step 1 gives us an idea how to proceed. Let us take some object that is not a point
of X, denote it by the symbol oo for convenience, and adjoin it to X, forming the set
Y = X U {co}. Topologize ¥ by defining the collection of open sets of ¥ to consist
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of (1) all sets U that are open in X, and (2) all sets of the form ¥ — C, where C is a
_compact subspace of X. :

We need to check that this collection is, in fact, a topology on Y. The empty set is
a set of type (1), and the space Y is a set of type (2). Checking that the intersection of
two open sets is open involves three cases:

UiNnU, is of type (1).
(Y -CHONE =C) =Y —(C1UCy) isoftype 2).
Uin{ -C)=U01N&X~-C) is of type (1),

because C is closed in X. Similarly, one checks that the union of any collection of
open sets is open:

U Uy=U is of type (1).
Ur-cp=r-(cp=r-C is of type (2).
Utwu o - =vu@E -0 =Y - (-0,

which is of type (2) because C — U is a closed subspace of C and therefore compact.

Now we show that X is a subspace of Y. Given any open set of ¥, we show its
intersection with X is open in X. If U is of type (1), then U N X = U} ifY — Cisof
type (2), then (¥ — CYy N X = X — C; both of these sets are openin X. Conversely,
any set open in X is a set of type (1) and therefore open in ¥ by definition.

To show that ¥ is compact, let # be an open covering of Y. The collection # must
contain an open set of type (2), say ¥ — C, since none of the open sets of type (1) con-
tain the point co. Take all the members of 4 different from Y — C and intersect them
with X; they form a collection of open sets of X covering C. Because C is compact,
finitely many of them cover C; the corresponding finite collection of elements of A
will, along with the element ¥ — C, cover allof Y.

To show that ¥ is Hausdorff, let x and y be two points of Y. If both of them lie
in X, there are disjoint sets U and V open in X containing them, respectively. On the
other hand, if x € X and y = 00, we can choose a compact set C in X containing

" a neighborhood U of x. Then U and ¥ — C are disjoint neighborhoods of x and 0o,
respectively, in Y.

Step 3. Finally, we prove the converse. Suppose a space Y satisfying conditions
(1)~(3) exists. Then X is Hausdorff because it is a subspace of the Hausdorff space Y.
Given x € X, we show X is locally compact at x. Choose disjoint open sets Uand V
of Y containing x and the single point of ¥ — X, respectively. ThenthesetC =Y -V
is closed in Y, so it is a compact subspace of Y. Since C lies in X, it is also compact
as a subspace of X; it contains the neighborhood U of x. B

If X itself should happen to be compact, then the space Y of the preceding theorem
is not very interesting, for it is obtained from X by adjoining a single isolated point.
However, if X is not compact, then the point of ¥ — X is a limit point of X, so that
X=7.

b e -

Definition. If Y is a compact Hausdorff space and X is a proper subspace of Y whose
closure equals Y, then ¥ is said to be a compactification of X. f Y — X equals a single
point, then Y is called the one-point compactification of X.

We have shown that X has a one-point compactification Y if and only if X is
a locally compact Hausdorff space that is not itself compact. We speak of Y as “the”
one-point compactification because Y is uniquely determined up to a homeomorphism.
EXAMPLE 4. The one-point compactification of the real line R is homeomorphic with
the circle, as you may readily check. Similarly, the one-point compactification of R? is
homeomorphic to the sphere S2. If R? is looked at as the space C of complex numbers,
then C U {oo} is called the Riemann sphere, or the extended complex plane. :

Tn some ways our definition of local compactness is not very satisfying. Usually
one says that a space X satisfies a given property “locally” if every x € X has “arbi-
trarily small” neighborhoods having the given property. Our definition of local com-
pactness has nothing to do with “arbitrarily small” neighborhoods, so there is some
question whether we should call it local compactness at all.

Here is another formulation of local compactness, one more truly “local” in nature,
it is equivalent to our definition when X is Hausdorff.

Theorem 29.2. Let X be a Hausdorff space. Then X is locally compact if and only
ifgivenx in X, and given a neighborhood U of x, there is a neighborhood V of x such
that V is compact and V C U.

Proof. Clearly this new formulation implies local compactness; the set C = V is the
desired compact set containing a neighborhood of x. To prove the converse, suppose X
is locally compact; let x be a point of X and let U be a neighborhood of x. Take the
one-point compactification ¥ of X, and let C be the set Y — U. Then C is closed
in ¥, so that C is a compact subspace of Y. Apply Lemma 26.4 to choose disjoint
open sets V and W containing x and C, respectively. Then the closure V of V in ¥ is
compact; furthermore, V is disjoint from C, so that V < U, as desired. =

Corollary 29.3. Let X be locally compact Hausdorff: let A be a subspace of X. If A
is closed in X or open in X, then A is locally compact.

Proof. Suppose that A is closed in X. Given x € A, let C be a compact subspace
of X containing the neighborhood U of x in X. Then C N A is closed in C and thus
compact, and it contains the neighborhood U N A of x in A. (We have not used the
Hausdorff condition here.)

Suppose now that A is open in X. Given x € A, we apply the preceding theorem
to choose a neighborhood V of x in X such that V is compact and V. C A. Then

C = V is a compact subspace of A containing the neighborhood V of x in A. B

Corollary 29.4. A space X is homeomorphic to an open subspace of a compact
Hausdorff space if and only if X is locally compact Hausdorff.

Proof. This follows from Theorem 29.1 and Corollary 29.3. ]
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Exercises *Supplementary Exercises: Nets

We have already seen that sequences are “adequate” to detect limit points, continuous
functions, and compact sets in metrizable spaces. There is a generalization of the
notion of sequence, called a net, that will do the same thing for an arbitrary topological
space. We give the relevant definitions here, and leave the proofs as exercises. Recall
that a relation < on a set A is called a partial order relation if the following conditions
hold:

1) a xaforalleo.

(2) fa < Band B < o, thena = .

@) Hfa<pand B <y, thena < y.
Now we make the following definition:

A directed set J is a set with a partial order < such that for each pair «, 8 of
elements of J, there exists an element y of J having the property that « < y and
By

1. Show that the following are directed sets:
(a) Any simply ordered set, under the relation <.
(b) The collection of all subsets of a set S, partially ordered by inclusion (that
‘is, A< Bif A C B).

(c) A collection + of subsets of § that is closed under finite intersections, par-
tially ordered by reverse inclusion (thatis A < Bif A D B).

(d) The collection of all closed subsets of a space X, partially ordered by inclu-
sion.

1. Show that the rationals Q are not locally compact.

2. Let {X,} be an indexed family of rionempty spaces.
(a) Show that if [] X, is locally compact, then each X, is locally compact and
X, is compact for all but finitely many values of a.
(b) Prove the converse, assuming the Tychonoff theorem.

3. Let X be a locally compact space. If £ : X — Y is continuous, does it follow
that f(X) is locally compact? What if f is both continuous and open? Justify
your answer.

by

4. Show that [0, 1]® is not locilly compact in the uniforin topology.

Bf:Xy—» Xzisa homeémorphism of locally compact Hau,sdo,rff', spaces,
show f extends to a homeomorphism of their one-poirit compactifications.

6. Show that the one-point compactification of R is homeomorphic with the cir-
cle St.

7. Show that the one-point compactification of Sg is homeomorphic with Sg.

8. Show that the one-point compactification of Z is homeomorphic with the sub-
space {0} U {1/n|n e Z;} of R.

9. Show thatif Gisa locaiiy compact topological group and H is 4 subgroup, then
G/H is locally compact.

10. Show that if X is a Hausdorff space that is locally compact at the point x, then
for each neighborhood U of x, there is a neighborhood V of x such that V is
compactand V C U. '

. A subset K of J is said to be cofinal in J if for each o € J, there exists € K

such that o < B. Show that if J is a directed set and X is cofinal in J, then K is
a directed set.

*11. Prove the following:

3. Let X be a topological space. A net in X is a function f from a directed set J
into X. If @ € J, we usually denote f () by xo. We denote the net f itself by
the symbol (xy)ues, OF merely by (xq) if the index set is understood.

The net (x,) is said to converge to the point x of X (written x4 — x) if for
each neighborhood U of x, there exists o € J such that

(a) Lemma. Ifp: X — Y is a quotient map and if Z is a locally compact
Hausdorff space, then the map

Ry

T=pxiz: XxZ-—YxZ

is a quotient map. a<pf=xgel.

[Hint: If = 1(A) is open and contains x x y, choose open sets U1 and V
with V compact, such that x x y € Uy x V and U; x V C #~}(A4). Given
U;xV ¢ 7~1(A), use the tube lemma to choose an open set U;11 containing
p~Hp(Uy)) such that U1 x V C w1 (A). Let U = | J U; show that U x V
is a saturated neighborhood of x x y that is contained in 7 =1 (4).]

Show that these definitions reduce to familiar ones when J = Z,.

4. Suppose that

(X¢)aes —> xin X and (Ya)aes —> yinY.

Show that (xy X yu) —> x X yin X x Y.
5. Show that if X is Hausdorff, a net in X converges to at most one point.
6. Theorem. Let A € X. Thenx € A if and only if there is a net of points of A

converging to x. » .
[Hint: To prove the implication =, take as index set the collection of all neigh-.

borhoods of x, partially ordered by reverse inclusion.]

An entirely different proof of this result will be outlined in the exercises
of §46.
(b) Theorem. Letp:A —> Bandq:C — D be quotient maps. If B and C-
are locally compact Hausdorff spaces, thenp x g : AxC - Bx Disa
quotient map.




