Hadamard’s Maximum Determinant Problem
In 1893, Hadamard considered the following question:

Let A be an n x n matriz with entries of absolute value at most M > 0. How large
can the absolute value of the determinant of A be?

Somewhat surprisingly, the problem is easier in the case when the entries of A are
complex numbers. Hadamard finds the complete solution in the complex case and
leaves a conjecture that has become famous in the real case.

Denote by ||z|| the Euclidian norm of a vector z = (ay, ag, ..., ;) € C", that is
|2)* = || + aa? + ... + |an|?.

Theorem 1.1. (Hadamard, 1893) Let A be an nx n complex matrix with linearly
independent columns z,zs, ..., Z,. Then

[det(A)* = |det(AA)| < TT llz)*
k=1
with equality iff A'Ais a diagonal matrix(columns are orthogonal).
Proof

Using the Gram-Schmidt process, construct inductively mutually orthogonal vec-
tors y1,yo, ..., Yn such that y; is a linear combination of zq, z,, ...,z in which the
coefficient of z;, is 1. Define:

= (z|yi)
Yk = 2k — Qriyi, where ag; = .
z; (yily:)
a) yx 7 0 since 2z, 2y, ..., zj, are linearly independent.
b) (yelyi) = (zely:) — amyily:) — - — awilyily:) = (zelyi) — iiﬂ'ii (yilyi) = 0.

Denote by B tthe matrix with columns yy,yo,...,y,. Because y’s are mutually
orthogonal, B'B = diag([ly1|I*, [ly2/%, .-, [[yall*)

Because z;, = yk—l—Zf;ll a;yi, matrices B and A are related via a transition matrix
T, which is upper triangular and has 1’s on the diagonal.
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Thus, we have

det(B) = det(T A) = det(T)det(A) = det(A), so |det(B)|* = |det(A)[*.
But |det(B)|? = det(B'B) :kf[ Iyl

Since z, =y, + Zf:_ll iy, using the orthogonality of y;’s, we have

k—1 k—1
(zelzr) = [zl = (yalye) + D lewl* (vilyi) = Ilyell® + > lows*[lyil >
i=1 i=1

In conclusion: ||yx||? < ||zx||* with equality if and only if y; = zj.
Thus . .
|det(A)]* = |det(B)|* = ] llyell* < TT llzll”,
k=1 k=1

with equality if and only if y, = z; for all &k, i.e the matrix A had orthogonal
columns to start with, i.e. AAisa diagonal matrix. O

The next Corollaries give upper estimates for the maximum determinant problem.
Corollary 1.2

Let A = (2;;) be an n x n compler matriz with |z;| < 1, then |det(A)| < n> with
equality iff |zi;| =1 for all1 <i,5 <n and A'A =nl,.

Proof

Let z; be the k-column of A. Assume that the columns of A are linearly indepen-
dent, as otherwise det(AtA) = 0 and the inequality is obvious. Since the absolute
value of every column element is at most 1, then: ||z.]|*> = |21 +. .. + |z ]* < 1.

Thus .
|det(A)]* < TT llze)l* < n".

k=1

Equality holds if only if |2;| = 1 and A'A=nI, O



Corollary 1.3

Let A = (z;;) be an n x n complex matriz with |z;| < M, then |det(A)| < M"n?
with equality iff |zi;| = M for all1 <i,j <n and A'A = M2nl,.

Proof - Exercise 1
Now the natural question is whether the upper bound given by these estimates

can be always achieved. Hadamard shows that the answer is affirmative in the
complex case.

Definition 1.1. A complex n x n matrix A = (z;;) is said to be a Hadamard
matrix of order n if |z;| = 1 and A'A =nl,.

Theorem 1.4 (Hadamard) For any natural number n, there erists a complex
Hadamard matriz A of order n.

Proof - Exercise 2

1 1 1
I & o &
n—1

Let A=|1 & .. & ,
1ot Lot

i(2k)

where {y =e =, 0 <k <n-—1are the complex n roots of unity. Show that
this choice of A satisfies, indeed, AA= nl,.

Definition 1.2 A real n x n matrix A = (z;;) is said to be a Hadamard matrix
of order n if z;; = £1 and A'A = nl,.

In view of the preceding Theorem, one asks if there exist real Hadamard matrices
of any order n. For n = 2, one easily checks that

wo- (1)

is a Hadamard matrix. In higher dimensions however, it turns out that real
Hadamard matrices will not always exist.

Theorem 1.5 (Hadamard)

Let A = (wvj) be a real Hadamard matriz of order n > 2. Then n is diwvisible by 4.
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Proof
If 7 and k are two different columns of A, these are orthogonal, so

0=> (agou) =411+ ... £1.

i=1

Thus, n must be even, and any two distinct columns have identical entries in
exactly n/2 rows.

Consider now j, k, [ three different columns of A. Then:

n

> (e + aig) (i + i) =

=1

n n n

= Z(Oé?j) + > (agan) + > (i) + Y (apaa) =n+0+04+0=mn.
i=1 i=1 i=1 i=1
But (ay; + air)(au; + aq) = 4 if j% k™ and I columns all have the same entry
in the i row. Otherwise, the product (ay; + aix)(cu; + ay) is 0. Hence n = 4p
where p is the number of rows in which all the three columns have the same entry.
In particular, any 3 different columns have the same entry in % rows. O

From Theorem 1.5, we conclude that in dimension n > 2 real Hadamard matrices
may exist only when n is divisible by 4. It is still a conjecture to this date that
this is the only restriction.

Hadamard Conjecture (1893)

There exist a real Hadamard matrix for every order n divisible by 4.



