
Hadamard’s Maximum Determinant Problem

In 1893, Hadamard considered the following question:

Let A be an n×n matrix with entries of absolute value at most M > 0. How large
can the absolute value of the determinant of A be?

Somewhat surprisingly, the problem is easier in the case when the entries of A are
complex numbers. Hadamard finds the complete solution in the complex case and
leaves a conjecture that has become famous in the real case.

Denote by ‖z‖ the Euclidian norm of a vector z = (α1, α2, ..., αn) ∈ Cn, that is

‖z‖2 = |α1|2 + |α2|2 + ... + |αn|2.

Theorem 1.1. (Hadamard, 1893) Let A be an n×n complex matrix with linearly
independent columns z1, z2, ..., zn. Then

|det(A)|2 = |det(A
t
A)| ≤

n∏
k=1

‖zk‖2,

with equality iff A
t
A is a diagonal matrix(columns are orthogonal).

Proof

Using the Gram-Schmidt process, construct inductively mutually orthogonal vec-
tors y1,y2, ...,yn such that yk is a linear combination of z1, z2, ..., zk in which the
coefficient of zk is 1. Define:

yk = zk −
k−1∑
i=1

αkiyi, where αki =
〈zk|yi〉
〈yi|yi〉

.

a) yk 6= 0 since z1, z2, ..., zk are linearly independent.

b) 〈yk|yi〉 = 〈zk|yi〉 − αk1〈y1|yi〉 − ...− αki〈yi|yi〉 = 〈zk|yi〉 − 〈zk|yi〉
〈yi|yi〉 〈yi|yi〉 = 0.

Denote by B the matrix with columns y1,y2, ...,yn. Because yk’s are mutually
orthogonal, B

t
B = diag(‖y1‖2, ‖y2‖2, ..., ‖yn‖2)

Because zk = yk+
∑k−1

i=1 αkiyi, matrices B and A are related via a transition matrix
T , which is upper triangular and has 1’s on the diagonal.

B = TA, where T =


1 α12 ... α1n

0 1 ... α2n

. . ... .
0 0 ... 1


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Thus, we have

det(B) = det(TA) = det(T )det(A) = det(A), so |det(B)|2 = |det(A)|2.

But |det(B)|2 = det(B
t
B) =

n∏
k=1

‖yk‖2.

Since zk = yk +
∑k−1

i=1 αkiyi, using the orthogonality of yk’s, we have

〈zk|zk〉 = ‖zk‖2 = 〈yk|yk〉+
k−1∑
i=1

|αki|2〈yi|yi〉 = ‖yk‖2 +
k−1∑
i=1

|αki|2‖yi‖2.

In conclusion: ‖yk‖2 ≤ ‖zk‖2 with equality if and only if yk = zk.
Thus

|det(A)|2 = |det(B)|2 =
n∏

k=1

‖yk‖2 ≤
n∏

k=1

‖zk‖2,

with equality if and only if yk = zk for all k, i.e the matrix A had orthogonal
columns to start with, i.e. A

t
A is a diagonal matrix. 2

The next Corollaries give upper estimates for the maximum determinant problem.

Corollary 1.2

Let A = (zij) be an n × n complex matrix with |zij| ≤ 1, then |det(A)| ≤ n
n
2 with

equality iff |zij| = 1 for all 1 ≤ i, j ≤ n and A
t
A = nIn.

Proof

Let zk be the k-column of A. Assume that the columns of A are linearly indepen-
dent, as otherwise det(A

t
A) = 0 and the inequality is obvious. Since the absolute

value of every column element is at most 1, then: ‖zk‖2 = |z1k|2 + . . .+ |znk|2 ≤ n.

Thus

|det(A)|2 ≤
n∏

k=1

‖zk‖2 ≤ nn.

Equality holds if only if |zij| = 1 and A
t
A = nIn. 2
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Corollary 1.3

Let A = (zij) be an n × n complex matrix with |zij| ≤ M , then |det(A)| ≤ Mnn
n
2

with equality iff |zij| = M for all 1 ≤ i, j ≤ n and A
t
A = M2nIn.

Proof - Exercise 1

Now the natural question is whether the upper bound given by these estimates
can be always achieved. Hadamard shows that the answer is affirmative in the
complex case.

Definition 1.1. A complex n × n matrix A = (zij) is said to be a Hadamard

matrix of order n if |zij| = 1 and A
t
A = nIn.

Theorem 1.4 (Hadamard) For any natural number n, there exists a complex
Hadamard matrix A of order n.

Proof - Exercise 2

Let A =


1 1 ... 1
1 ξ1 ... ξn−1

1 ξ2
1 ... ξ2

n−1

. . ... ...
1 ξn−1

1 ... ξn−1
n−1

 ,

where ξk = e
i(2kπ)

n , 0 ≤ k ≤ n − 1 are the complex n-th roots of unity. Show
that this choice of A satisfies, indeed, A

t
A = nIn.

Definition 1.2 A real n × n matrix A = (xij) is said to be a Hadamard matrix
of order n if xij = ±1 and AtA = nIn.

In view of the preceding Theorem, one asks if there exist real Hadamard matrices
of any order n. For n = 2, one easily checks that

H(2) =

(
1 1
1 −1

)

is a Hadamard matrix. In higher dimensions however, it turns out that real
Hadamard matrices will not always exist.

Theorem 1.5 (Hadamard)

Let A = (αij) be a real Hadamard matrix of order n > 2. Then n is divisible by 4.
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Proof

If j and k are two different columns of A, these are orthogonal, so

0 =
n∑

i=1

(αijαik) = ±1± 1± ...± 1 .

Thus, n must be even, and any two distinct columns have identical entries in
exactly n/2 rows.

Consider now j, k, l three different columns of A. Then:

n∑
i=1

(αij + αik)(αij + αil) =

=
n∑

i=1

(α2
ij) +

n∑
i=1

(αijαil) +
n∑

i=1

(αikαij) +
n∑

i=1

(αikαil) = n + 0 + 0 + 0 = n .

But (αij + αik)(αij + αil) = 4 if j − th, k − th and l − th columns all have the
same entry in the i − th row. Otherwise, the product (αij + αik)(αij + αil) is 0.
Hence n = 4p where p is the number of rows in which all the three columns have
the same entry. In particular, any 3 different columns have the same entry in n

4

rows. 2

From Theorem 1.5, we conclude that in dimension n > 2 real Hadamard matrices
may exist only when n is divisible by 4. It is still a conjecture to this date that
this is the only restriction.

Hadamard Conjecture (1893)

There exist a real Hadamard matrix for every order n divisible by 4.
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