Name: \qquad

Panther ID:

Exam 2
 Calculus II
 Fall 2009

To receive credit you MUST SHOW ALL YOUR WORK. Answers which are not supported by work will not be considered.

1. $(40 \mathrm{pts})$ Compute each of the following (10 pts each $)$:
(a) $\int_{0}^{\infty} \frac{x}{\left(x^{2}+1\right)^{3 / 2}} d x$
(b) $\int \frac{x+1}{x^{3}+x} d x$
(c) $\int e^{x} \cos x d x$
(d) $\int \frac{1}{\left(x^{2}+a^{2}\right)^{3 / 2}} d x$
2. (22 pts) A famous formula to approximate n ! for large values of n is given by Stirling's formula. One form of this formula is

$$
\ln (n!) \approx n \ln n-n
$$

This goal of this exercise is to give you some evidence towards this formula.
(a) (8 pts) Given a positive integer n, compute

$$
\int_{1}^{n} \ln x d x
$$

(b) (8 pts) Write the Riemann sums corresponding to the left-end point and the right-end point approximations of the integral in part (a) when subdividing the interval $[1, n]$ into sub-intervals of length 1. (Pictures of the Riemann sums on a graph of $y=\ln x$ are also required for full credit.)
(c) (6 pts) Using parts (a) and (b), derive the inequalities:

$$
\ln ((n-1)!) \leq n \ln n-n+1 \leq \ln (n!) .
$$

3. (32 pts) Determine whether each of the following series converges or diverges (8 pts each). Full justification of the answer should be provided.
(a) $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k+1}+\sqrt{k}}$
(b) $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^{2}}$
(c) $\sum_{k=2}^{\infty} \frac{1}{\sqrt[k]{2}}$
(d) $1+\frac{1 \cdot 3}{3!}+\frac{1 \cdot 3 \cdot 5}{5!}+\frac{1 \cdot 3 \cdot 5 \cdot 7}{7!}+\ldots$
4. (16 pts) Consider the sequence $\left\{a_{n}\right\}$ given by

$$
a_{n}=\frac{5^{n}}{n!} .
$$

(a) (6 pts) Show that the sequence $\left\{a_{n}\right\}$ is eventually decreasing.
(b) (4 pts) Show that the sequence $\left\{a_{n}\right\}$ is bounded.
(c) (6 pts$)$ From parts (a) and (b) it follows that the sequence $\left\{a_{n}\right\}$ is convergent. Why? Determine its limit.

