Quiz 0

MAP 2302 - Summer B 2018

To receive credit you MUST SHOW ALL YOUR WORK. Answers which are not supported by work will not be considered.

1. (4 pts) Compute $\frac{dy}{dx}$ in each case:

(a)
$$y = x^2 \ln x$$

By product rule

 $\frac{dy}{dx} = 2x \ln x + x + x$
 $\frac{dy}{dx} = 2x \ln x + x$

2. (4 pts) Compute each anti-derivative:

(a)
$$\int e^{\tan x} \sec^2 x \, dx =$$

Sub $w = \tan x$
 $dw = \sec^2 x \, dx$

$$= \int e^{w} dw = e^{w} + c$$

$$= e^{\tan x} + c$$

(b)
$$y = \sin^2(\sqrt{x}) = \left(\frac{\sin(\sqrt{x})^2}{\sin(\sqrt{x})}\right)^2$$

Chain hule
 $\frac{dy}{dx} = \frac{x\sin(\sqrt{x}) \cdot \cos(\sqrt{x}) \cdot \frac{1}{x} \cdot x^{-\frac{1}{x}}}{\cos(\sqrt{x})}$
 $\frac{dy}{dx} = \frac{\sin(\sqrt{x})\cos(\sqrt{x})}{\cos(\sqrt{x})}$

(b)
$$\int \frac{x+1}{x^2+1} dx = \int \frac{x}{x^2+1} dx + \int \frac{1}{x^2+1} dx = \frac{1}{x^2+$$

3. (3 pts) Newton's Law of Cooling states that the rate of change of the temperature of a cooling body is proportional to the difference between the temperature of the body and the constant temperature of the surrounding medium. A potato that has been baking at 400° F is taken out of the oven and is left to cool down in a room with (constant) temperature of 70° F. Let y(t) be the temperature of the potato t minutes after it was taken out of the oven. Set up a differential equation for y(t) according to Newton's Law of Cooling. You do not have to solve the equation.

$$\frac{dy}{dt} = k(y-70)$$

$$y(0) = 400$$

k constant, leco.

Alote: just this was enough
for full credit