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a b s t r a c t

We extend our studies of a quantum field model defined on a lattice having the dilation
group as a local gauge symmetry. The model is relevant in the cross-disciplinary area
of econophysics. A corresponding proposal by Ilinski aimed at gauge modeling in non-
equilibriumpricing is realized as a numerical simulation of the one-asset version. The gauge
field background enforcesminimal arbitrage, yet allows for statistical fluctuations. The new
feature added to the model is an updating prescription for the simulation that drives the
modelmarket into a self-organized critical state. Taking advantage of some flexibility of the
updating prescription, stylized features and dynamical behaviors of real-worldmarkets are
reproduced in some detail.

Published by Elsevier B.V.

1. Introduction

The analysis and modeling of financial price time series has a long history [1–3] and has attracted considerable interest
at an accelerated pace in the last two decades. Technological advances have made it possible to collect and process vast
amounts of data. As a result, various stylized facts about the statistics of financial data have been discovered [4–6]. These
features are mostly concerned with scaling laws, akin to findings in many systems described by statistical physics. There,
scaling behavior arises from the interaction of many units in such a way that a critical state is reached. Thus, one may ask if
a financial market, for example, can be modeled based on similar principles. In generic terms, the building blocks could be
many individual agents with suitable mutual interactions. Indeed, Lux and Marchesi have shown that scaling laws can arise
in such a setting [7].

When building amicroscopicmodel it is prudent to rely on a theoretical foundation supported by evidence. In the present
work, we will employ two such principles. First, arbitrage opportunities will be annihilated during the time evolution of the
market, though admitting statistical fluctuations. Second, the dynamics of themodelwill drive it into a self-organized critical
state, thus naturally giving rise to scaling behavior. Both aspects have been investigated separately in previous work, see
Refs. [8,9] respectively. Here, we merge those elements into a microscopic market model, using numerical simulation to
study its characteristics.

The next section gives an overview of the model’s dynamics and definitions.

2. Lattice model

Following a proposal by Ilinski [10] we define a lattice field theory with a ladder topology as shown in Fig. 1. In physics
terms there are matter fields Φ(x) ∈ R+ defined on sites x = (i, j), where j = 0 · · · n means discretized time, and i = 0, 1
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Fig. 1. Left: illustration of the ladder geometry of the lattice model and the label scheme for the fields. Right: depiction of the gauge invariant elements
A, B, C,D used in the action.

is a spatial index. These are represented by filled circles in Fig. 1. In addition, there are gauge fields Θµ(x) ∈ R+ which live
on links starting at site x in temporal µ = 0 or spatial µ = 1 direction. Those are represented by arrowed lines in Fig. 1.

As a model for a financial market, again following [10], we interpret the matter field as instances of an account value, in
some unit. At i = 0 it could be a cash account, whereas at i = 1 the valuemay be interpreted as the number of shares owned
in some financial instrument. The spatial links Θ1(0, j), connecting cash and shares, are simply conversion factors between
the corresponding units. Temporal links Θ0(0, j), which connect cash value sites one time step apart, mean interest rate
factors. Similarly, temporal links Θ0(1, j), starting from a shares site, carry information about the change in share value one
time step apart.

The rationale behind such amodel is to describe amarket that dynamically evolves independent of the trading units being
used. For example, in comparable markets, the dynamics should not depend on the specific, notably arbitrary, currency unit
being used in transactions. This, at least, is the hypothesis which should apply to markets trading in like instruments.

Mathematically, this idea is implemented by a quantum field theory with local gauge invariance. This has been worked
out in great detail in the context of financial markets [10]. In a previous work we have studied some aspects of those ideas
using numerical simulation [8]. Since the current work is directly building on the latter, we refer the reader to Ref. [8] for
the technical details. In particular, we shall use the nomenclature therein. However, to keep the presentation self contained,
the essential building blocks are discussed in what follows.

We write the action of the lattice model as

S[Θ, Φ, Φ̄] = S0[Θ] + S1[Θ, Φ, Φ̄]. (1)

It has a pure gauge field part

S0[Θ] =
1
2


x


µ<ν

[Pµν(x)+ Pνµ(x)− 2] (2)

where

Pµν(x) = Θµ(x)Θν(x+ eµ)Θ−1µ (x+ eν)Θ
−1
ν (x), (3)

and eµ is a unit vector in direction µ. The second part contains the matter field

S1[Θ, Φ, Φ̄] =

x


µ

[d+µ Φ̄(x)Θµ(x)Φ(x+ eµ)+ d−µ Φ̄(x)Θ−1µ (x− eµ)Φ(x− eµ)

+ d̄+µ Φ̄(x+ eµ)Θ−1µ (x)Φ(x)+ d̄−µ Φ̄(x− eµ)Θµ(x− eµ)Φ(x)] (4)

where Φ̄(x) = 1/Φ(x). The coupling constants d±µ , d̄±µ ∈ R determine the interactions of matter and gauge fields. In (2) and
(4) it is understood that the summations comprise only sites and links contained in the lattice geometry described above,
see Fig. 1.

The action is invariant with respect to local gauge transformations

Φ(x)→ g(x)Φ(x) (5)

Φ̄(x)→ Φ̄(x)g−1(x) (6)

Θµ(x)→ g(x)Θµ(x)g−1(x+ eµ), (7)
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where g(x) ∈ G is an element of the dilation group G = R+, i.e. multiplication by positive real numbers. Those carry out
conversions between (arbitrary) units. The action is constructed from the elements depicted in Fig. 1. These are the smallest
gauge invariant objects that can be assembled from the fields.

The diagram associated with label A is known as an elementary plaquette (3). Its value is interpreted as the gain (or
loss) realized through an arbitrage move [10]. The global minimum of the classical action S[Θ, Φ, Φ̄] corresponds to zero
arbitrage [8]. Quantization of the field is done through the usual path integral formalism. The partition function thus is
defined as the functional integral

Z(β) =


[DΘ][DΦ]e−βS[Θ,Φ,Φ̄]. (8)

In this way stochastic fluctuations about zero arbitrage are allowed. Their magnitude is regulated by the parameter β .
Diagrams B, C,D are gauge invariant elements of the form

Rµ(x) = Φ̄(x)Θµ(x)Φ(x+ eµ). (9)

Diagram C , for example, gives the value of the investment instrument at time j + 1 divided by its value at j, provided we
adopt the above interpretation of the fields. It is a measure for the relative change of the asset value during one time step

R0(1, j) = Φ̄(1, j)Θ0(1, j)Φ(1, j+ 1). (10)

We also define the related quantity

rj+1 = log R0(1, j), (11)

commonly called the ‘return’, indicating a gain (>0) or a loss (<0) at the end of the time step.

3. Updating strategy

The generation of lattice field configurations as implemented in Ref. [8] follows a standard procedure. Based on the
action S[Θ, Φ, Φ̄] the field components are updated through a heatbath algorithm [11,12] linked to the partition function
(8). Periodic boundary conditions (in the time direction) are imposed on all fields as well. Thus, all gauge field links Θµ(x)
and matter field components Φ(x) that are part of the ladder geometry, see Fig. 1, are dynamical degrees of freedom. Note
that Φ̄(x) = 1/Φ(x) is not an independent field, it was introduced for convenience of notation. In this form the number of
degrees of freedom is 5n+ 3. However, in contrast to Ref. [8], the updating strategy is modified in two respects.

First, we do set constraints on the fields that live on the axis i = 0, see Fig. 1. The reasoning here is that wewish to design
the model such that the axis describes a cash account subject to accumulating interest. The interest rate is endogenously
determined. Even at 10% annually the daily rate factor is 1.0003 and thus hardly distinguishable from one. As the model is
designed to describe a high frequency market, where the time extent n translates to typically a day, or so, we wish to set a
constraint accordingly. In a gauge model this is not straightforward, because the meaning of the field components is gauge
dependent. To remedy this situation, gauge fixing is called for.With reference to (5)–(7) define a gauge transformation along
the axis i = 0,

g(0, j) = Φ̄(0, j), (12)

with g(x) on all other sites being arbitrary. The gauge transformed fields along the axis, i = 0, then are

Φ ′(0, j) = g(0, j)Φ(0, j) = 1 (13)

Φ̄ ′(0, j) = Φ̄(0, j)g−1(0, j) = 1 (14)

Θ ′0(0, j) = Φ̄(0, j)Θ0(0, j)Φ(0, j+ 1) = R0(0, j). (15)

In the last equation we recognize the link variable as the (gauge invariant) return (9) of the cash holding during one time
step. We therefore set

Θ ′0(0, j) = 1. (16)

In our simulationwe choose a random start for the lattice fields. From there, the constraint R0(0, j) = 1 is then implemented
by applying the gauge transformation (12), and then setting the axis links to one (16). During the subsequent updating
procedure the axis fieldsΦ(0, j) andΘ0(0, j) are never changed, which reduces the number of degrees of freedom to 3n + 2.
Nonetheless, the right-hand side of (16) may differ from one, depending on the interest rate factor desired.

The next step is to run a heatbath algorithm with the lattice action S[Θ, Φ, Φ̄] until equilibrium is reached [8]. The
lattice field configurations then model a market environment where arbitrage opportunities exist only briefly, subject to
fluctuations due to the quantumnature of the fields. In economic terms thismodel describes an efficientmarket. Equilibrium,
however, does not seem to be realized in the real world [13].

Second, subscribing to this paradigm, we introduce a new element which is applied post equilibrium. In [9] we have
studied a simple model where market instances live along a linear chain in the time direction. The sites carry fields rj ∈ R+
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Fig. 2. Left: illustration of the returns involved in the ‘fitness’ criterion (17) (left), and the field components subject to updating (right), done at the ‘signal’
site j = js .

which are directly interpreted as returns, thus having the samemeaning as (11). There is no gauge field in the simplemodel.
The key ingredient is an updating algorithm thatmimics the popular Bak–Sneppen evolutionarymodel [14–16]. The quantity

vj = rj(rj+1 − rj−1) (17)

turned out to be essential to the field dynamics. In the context of [9] the updating strategy consists in finding the site js for
which the absolute value of (17) is maximal |vjs | = max{|vj| : j = 0 · · · n}, and then replace rjs and its neighbors rjs±1 with
random numbers. Iterating this process leads to a self-organized critical state and produces price times series, and related
statistics, which are almost indistinguishable from those in real markets [8].

In view of those results it seems desirable to replicate this updating strategy within the framework of the gauge model
as closely as possible. Towards this end, we still do define the ‘fitness’ measure vj as in (17), however, the returns are now
given by (10) and (11). Their composition is illustrated in Fig. 2. The updating prescription proceeds with finding the ‘signal’

V = max{|vj| : j = 1 . . . n} (18)

of the field configuration, and the site js of its location

|vjs | = V . (19)

We then update the three field components Φ(1, js − 1), Θ0(1, js − 1), Φ(1, js), which enter the return rjs , and the two
next-neighbor links Θ0(1, js), Θ0(1, js − 2), see Fig. 2. Note that Φ(1, js + 1) and Φ(1, js − 2) are left unchanged. In this
way only the three returns rjs−1, rjs , rjs+1 are affected. This strategy most closely resembles the updating prescription used
in Ref. [8].

It should be emphasized that the returns rj, see (11), only play the role of operators used to find the return signal, see
(17)–(18). They are not in themselves degrees of freedom participating in the dynamics of the field evolution. Those, at each
update step, are twomatter field components and three gauge field components, as indicated above. However, the net effect
of updating those fields is to change rjs−1, rjs , rjs+1, mimicking the Bak–Sneppen model.

Updating those field components consists in drawing random numbers from certain probability distributions. We have
chosen those based on the lattice action S[Θ, Φ, Φ̄]mentioned above. Heatbath steps using the corresponding Boltzmann-
like distribution, see (8), are applied to the various field components. Essentially, the probability distribution for a given field
component is given by its local environment. It is convenient to rewrite the fields as

Θµ(x) = eθµ(x) and Φ(x) = eφ(x). (20)

Then, after a gauge transformation, the probability densities for the gauge fields and thematter fields, respectively, have the
form

pΘ(θµ(x)) ∝ exp

−2β


LΘ L̄Θ cosh(θµ(x))


(21)

pΦ(φ(x)) ∝ exp

−2β


LΦ L̄Φ cosh(φ(x))


. (22)

These results are derived in detail in the Appendix. The coefficients LΘ , L̄Θ and LΦ, L̄Φ are independent of Θµ(x) and Φ(x),
respectively. The products LΘ L̄Θ and LΦ L̄Φ are gauge invariant and, together with the parameter β , determine the variance
of the probability distributions for the field components. Those distributions strongly depend on the local environment at
the location of the fields.

Now, at each updating step we randomly draw fields φ′(1, j), js − 1 ≤ j ≤ js, from (22). Relevant averages considered
are

aθ =
1
3

js
j=js−2

θ0(1, j) and aφ =
1
2

js
j=js−1

φ′(1, j). (23)
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Updating the fields then is accomplished by replacing

θ0(1, j)←− θ0(1, j)− χaθ , js − 2 ≤ j ≤ js (24)

φ(1, j)←− φ′(1, j)− aφ, js − 1 ≤ j ≤ js. (25)

By including the parameter χ we have introduced a novel feature to the updating process. While χ = 1 essentially mirrors
the strategy in Ref. [9], deviations from that value introduce very interesting features to the model. We will be able to
describe a range of different returns distributions and time series, as will be described in the next section.

Finally, we apply heatbath updates to the two spatial (horizontal) link variables θ1(0, j), js − 1 ≤ j ≤ js, which connect
to the affected matter fields, see (25). These links occur in three elementary plaquettes

P10(0, j− 1) = Θ1(0, j− 1)Θ0(1, j− 1)Θ−11 (0, j)Θ−10 (0, j− 1), (26)

see (3), where js−1 ≤ j ≤ js+1. The reason is that updating θ0(1, j), as prescribed by (24), changes the plaquettes (26) and
thus upsets the no-arbitrage environment of the lattice fields. Updating the above links with the lattice action S[Θ, Φ, Φ̄]

rectifies this circumstance.
From a purely academic point of view one may wonder about the continuum limit of the field model. We have two

comments: First, there is a rather subtle interplay between the continuum limit (lattice constant→ 0), the infinite volume
limit (n → ∞), and the effect of an external field, even for an Abelian gauge model. For this reason the features of the
continuum field theory are not easily accessible. We refer the inquisitive reader to Ref. [17]. Second, though the continuum
limit is interesting in a field theoretical setting, it is not relevant to our current application. Financial data time series are
discrete and finite. A discrete, and finite, model appears to best match this situation.

4. Results

The simulations were done on a lattice of size n = 782 with gauge field coupling parameter β = 1, and the matter field
couplings d±µ = d̄±µ = 1. These parameters are the same as in Ref. [8], with the one asset model m = 1. The number of
heatbath update steps was 104 to equilibrate the field from a random start. Final configurations were reached after 4× 106

‘signal’ updates.
First, we discuss the effect of the parameter χ in (24). A suitable observable (order parameter) is the gauge invariant link

along the asset axis (10). Using the notation (20) we have

R0(1, j− 1) = exp (−φ(1, j− 1)+ θ0(1, j− 1)+ φ(1, j)) = exp(rj). (27)

The updating algorithm, described in Section 3, employs symmetric probability distribution functions for θ and φ.
Consequently, the probabilities for realizing a gain rj > 0 and a loss rj < 0 are equal. Thus we define the symmetric link

Lj =
1
2


exp(rj)+ exp(−rj)


− 1 = cosh(rj)− 1 (28)

and its lattice average

L =
1
n

n
j=1

Lj. (29)

Numerically, the value of L is particular to a distinct lattice field configuration. We denote the (stochastic) average over field
configurationswith angle brackets, here ⟨L⟩. In Fig. 3 the dependence of ⟨L⟩ on the parameterχ is displayed. The plot symbols
‘•’ indicate data points from simulations at χ = 10k, k = −6,−5 · · · + 1. The errors come from 48 field configurations. The
line curve in Fig. 3 is a four-parameter fit, a1 · · · a4, to those eight data points with y = a1 tanh[a2(− log10(x) + a3)] + a4.
Remarkably, there clearly is a transition region in the, approximate, range 10−4 < χ < 10−1. For small values χ ≪ 10−4
the average link operator saturates at 0.2406, while for large values 10−1 ≪ χ it tends to 0.0092, according to the fit. Using
the (crude) conversion cosh(r) − 1 = L for simplicity, see (28), this corresponds to returns r ≈ ±0.68 and r ≈ ±0.14,
respectively, for the above limits of χ . Those limits may describe valid markets, which could be seen as volatile and calm,
respectively. In view of this observation the transition region becomes particularly interesting. It opens up the possibility to
simulate markets with a wide range of features between those extremes. Below, we will present results for χ =

0.0005, 0.0013 within the transition region. Those are indicated by plot symbols ‘+’ in Fig. 3.
During a simulation, the evolution of the lattice towards a critical state can be monitored, for example, by observing the

signal V , see (18), as a function of the updating step counter, say s = 0, 1, 2 · · ·. Writing V (s) we follow [16] and define the
‘gap’ function

G(x) = min{V (s) : s ∈ N ∪ {0} and s ≤ x} with x ∈ R+ ∪ {0}. (30)

This is a decreasing piecewise constant function with discontinuities at certain discrete values xk, k ∈ N. The set of update
steps between xk−1 and xk is called an avalanche of lengthΛk = xk−xk−1. Eventually, as x→∞, the avalanche size diverges
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Fig. 3. Expectation value ⟨L⟩ of the gauge invariant average link operator (29) as a function of the update parameter χ in (24). The plotting symbols ‘•’ and
‘+’ correspond to specific values of χ for which simulations were made. The symbol ‘◦’ indicates the symmetry point χ = 0.0052 of the fit.

Fig. 4. Frequency distributions of avalanche sizes for two values χ = 10−5, 10−1 of the update parameter.

and the system has reached criticality [16]. For an elaboration on these concepts, presented in a context close to the current
work, we refer the reader to Ref. [9]. We only show a key result here.

In Fig. 4 the frequency distribution ∆N/∆Λ of the avalanche sizes is displayed. Here ∆Λ is a binning interval for the
avalanche sizes and ∆N is the count of avalanches within that interval. We have used 10,000 bins with ∆Λ = 1. The data
points and errors come from an ensemble average over 2400 independent lattice simulations with 4 × 106 update steps
each. The log–log plot clearly shows a power law behavior. A power law indicates scaling, which is a signature feature of a
critical system.

For the time being, we continue to present results for the two update parameters χ = 10−5 and χ = 10−1. These
values correspond to the boundaries of the transition region, see Fig. 3. Inside that region, the frequency distributions of
avalanche sizes are almost indistinguishable from the results shown in Fig. 4. Examples ofmodelmarkets for suitable update
parameters in the transition region are discussed below.

The gains distributions produced by the lattice model with χ = 10−5, 10−1 are shown in Fig. 5. The gauge invariant
returns r , as defined in (11), are put into bins of size ∆r , and ∆c/∆r is the number of counts per bin. The errors are
obtained from 2400 independent simulations. While both histograms possess fat tails, we observe a distinct difference of
the qualitative features for the distributions. At χ = 10−5 a distinctly pointed central peak sits on very broad bulging tails.
Looking at χ = 10−1 the central peak has broadened such that its very top is almost Gaussian while the tails look linear.
This means that the two distributions cannot be mapped into each other by simple scale transformations applied to the
axes. The two gains distributions describe genuinely different markets. Interestingly, this matches our previous assessment
of the regions χ ≪ 10−5 and 10−1 ≪ χ discussed in the context of Fig. 3.

Examples of returns time series for each of the two parametersχ are displayed in Fig. 6. By visual inspection, both of those
exhibit volatility clustering, yet display different dynamical behavior. In the realm of χ = 10−5 the time series appears to
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Fig. 5. Lattice generated gains distributions of the returns r for the values χ = 10−5, 10−1 of the update parameter.

Fig. 6. Examples of returns time series rj versus the lattice time j at χ = 10−5 and χ = 10−1 .

favor one side of the zero mark for short periods of time, as compared to the series of χ = 10−1 which smoothly fluctuates
about zero in either direction.

We briefly pause here to reflect on the interplay of gauge invariance and self-organization. Both features are explicitly
built into themodel. They are independent in the sense that the updating procedure based on the returns (11) respect gauge
invariance, the rj are invariant themselves, and that the heatbath updates of the action based on (8) do not in themselves
lead to a critical state [8]. It would be interesting to look for ways of merging those features.

Now, for a closer investigation, we have selected the parameters χ = 0.0005, 0.0013 from the transition region. In
Fig. 3 their locations are marked by ‘+’ plot symbols. The choice of these values reflects our observation that model market
characteristics, say the gains distribution for example, hardly change as χ is decreased from ≈0.1 to ≈0.005. Most of the
market model tuning happens in the upper segment of the ⟨L⟩ curve in Fig. 3 as χ further decreases below≈0.005.

It is tempting to utilize this range for modeling historical markets of varying characteristics. However, we leave this
to future work. Here, our focus is on the properties of time series dynamics of the lattice model as being evaluated with
standard financial analysis tools.

The gains distributions forχ = 0.0005 andχ = 0.0013 are displayed in Fig. 7. Theywere obtained from 2400 simulation
runs with length 4 × 106 each. Again, the distributions clearly exhibit fat tails but are otherwise different in their shapes.
The χ = 0.0005 distribution puts more emphasis on larger returns than the χ = 0.0013 distribution. This is echoed in the
corresponding returns time series.

Samples of those time series are displayed in Fig. 8 for χ = 0.0005 and Fig. 9 for χ = 0.0013, respectively. Each figure is
composed of eight randomly selected independent simulation runswith 4×106 updates each. Compared to theχ = 0.0013
time series, the χ = 0.0005 series have a, somewhat perceptible, higher occurrence of volatility clusters as well as bigger
swings between them.

We now turn to gauging the ability of our model to replicate various features of financial markets. One crucial aspect
of financial markets returns is their volatility, as well as how this volatility evolves over time. Volatility is more relevant
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Fig. 7. Gains distributions from simulations with update parameter χ = 0.0005 and χ = 0.0013.

today than ever, with large spikes possibly occurring in short periods of time. Financial markets returns generally display
volatility ‘clusters’. These clusters indicate that once the volatility is high, it tends to remain high for a while, and that
similarly, once it has come down, it tends to remain low for some time. A convenient and well-accepted way of modeling
such characteristics is through the use of the Auto Regressive Conditional Heteroskedasticity (ARCH) model pioneered by
Engle [2] or through the use of the more encompassing Generalized Regressive Conditional Heteroskedasticity (GARCH)
model proposed by Bollerslev [3].

Whether working on pricing a derivative product, attempting to hedge an exposure, optimizing a portfolio in a mean-
variance framework, or estimating the Value-At-Risk of a position, the ability to capture andmodel the stochasticity and the
clustering properties of the volatility is paramount. Not doing so can lead to the wrong probability distribution being used,
since volatility clusters impact the shape of returns distributions in two important ways. First, the fact that a period of calm
statistically tends to be followed by another period of calm indicates that there will be a fairly large amount of probability
mass around the mean (return). Graphically this phenomenon translates into a probability distribution function that is
higher than the Gaussian one in the vicinity of the mean. Second, the fact that a period of extreme movements statistically
tends to be followed by another period of extreme movements indicates that there will be non-negligible amounts of
probability mass in the tails areas. Graphically this phenomenon translates into a probability distribution function that
is higher than the Gaussian one in the vicinity of the tails.

The fairly wide-ranging GARCH specification models the volatility as both a function of past squared return shocks and
of past levels of itself. If both past return shocks and past volatility levels are low, for instance, the odds are that the next
volatility levels will remain low. If past volatility levels are low but recent past return shocks are high, the levels of volatility
will likely increase. If past volatility levels are high but recent past return shocks are low, the levels of volatility will perhaps
decrease. Finally, if both past return shocks and past volatility levels are high, the odds are that the next volatility levels
will remain high. In a GARCH(p, q) specification, the number of lags p and q allowed for past shocks and past volatility
levels are limitless. However, Hansen and Lunde [18] explore the ability of 330 different ARCH/GARCH models to capture
the features of various financial returns and come to the conclusion that a GARCH(1, 1) model performs just as well as the
more ‘sophisticated’ ones. Our specification for the volatility σ 2

t at time t is thus a GARCH(1, 1) described by the following
equation:

σ 2
t = α0 + α1ϵ

2
t−1 + β1σ

2
t−1, (31)

where ϵ2
t−1 and σ 2

t−1 are the one-period lagged squared return shock and one-period lagged variance, respectively.
We simulate 100 lattice time series for two different levels of our tuning parameter χ . In the first set of simulations, χ

is set equal to a value of 0.0005 while in our second set of simulations, χ is set equal to a value of 0.0013. This allows for
the generation of different returns distributions and times series, namely financial markets returns with varying degrees of
activity: The set of simulations using aχ value of 0.0005 reflect a somewhatmore volatilemarket than the set of simulations
using a χ value of 0.0013. Previous studies have shown that even a simple lattice model [9] is able to produce returns
volatility dynamics displaying some ARCH/GARCH effects, and also that it is able to produce returns volatility dynamics
that are rather consistent with those of NASDAQ historical returns. With the present model, we are here conducting a more
extensive investigation: We estimate GARCH(1, 1) fits from a large number of randomly chosen lattice configurations for
the purpose of demonstrating the stability, consistency, and flexibility of our lattice model.

The resulting parameters obtained are shown in Fig. 10 and in Fig. 11 for χ = 0.0005 and χ = 0.0013 respectively, for
a total of 100 different lattice time series. For visual ease, the parameters are ordered before being plotted. In Fig. 10 one
can thus immediately see that the β1 parameter is between 0.85 and 1.0 in about 93% of the cases, a result consistent with
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Fig. 8. Samples of returns time series for the update parameter χ = 0005. The corresponding gains distribution is shown in Fig. 7.

NASDAQ GARCH(1, 1)-estimated figures in Ref. [9]. In Fig. 11 the β1 parameter is between 0.85 and 1.0 in about 83% of the
cases. This indicates that the lagged volatility feedback is strongly consistent across various market conditions and various
simulations. In Fig. 10 one can also see that the α1 parameter is below 0.15 in about 99% of the cases, a result also consistent
with NASDAQ GARCH(1, 1)-estimated figures in Ref. [9]. Finally, in Fig. 11 the α1 parameter is below 0.15 in about 99% of
the cases, although a higher proportion is above 0.05 when compared to the values it takes in Fig. 10. These results indicate
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Fig. 9. Samples of returns time series for the update parameter χ = 0013. The corresponding gains distribution is shown in Fig. 7.

that the lagged return shock feedback is also strongly consistent across various market conditions and various simulations.
The α0 parameter is consistently very low in both cases, as it should at these high frequencies.

It is also interesting to note that for each parameter, we obtain some ‘outliers’ in about 5%–20% of the cases, although
they are outliers only in the sense that they differ from the other 95% to 80% of the estimates that are themselves incredibly
consistent, and are not outliers in the sense that their values would be considered too extreme or unreasonable. It is
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Fig. 10. GARCH(1, 1) fit parameters for a sample of 100 lattice time series at χ = 0.0005. The configuration counter c has been subject to sorting with
respect to β1 .

important to note that when running multiple simulations, one is bound to obtain some results that differ somewhat
from the estimates’ consensus. For instance, even if one was to simulate an exact GARCH(1, 1) process many times and
subsequently estimate the parameters from the simulated data, some percentage of the estimated parameters would stray
from the median estimates.

The outliers mentioned to be happening in about 5%–20% of the cases are already showing in the three graphs of Figs. 10
and 11. For each parameter, one can see the more extreme values on the right-hand side of each graph, by definition, since
the obtained parameter values are ordered before being plotted.

In summary, 100% of our estimated parameters are sensible, across various market conditions (more or less volatile) and
thus across varying returns distributions, and over a myriad of simulations.

5. Conclusion

The subject of this work has been to explore a class of models designed to simulate the properties of financial markets.
The output of themodel is a time series of returns, fromwhich gains distributions and related features could be derived. The
potential of the model for replicating market dynamics, as described by standard financial analysis tools, was the primary
aim of this study.

The production of our time series has been done by numerical simulation based on a lattice description of fields in
time–asset space. We have restricted ourselves to a one-asset model linked to an interest rate account. The dynamics are
based on a gauge invariant lattice action which, when quantized, gives rise to eliminating arbitrage opportunities up to
stochastic fluctuations, thus reflecting real market conditions. The second pillar of the model is an updating prescription
that evolves the lattice fields into a self-organizing critical state. This appears to be an essential element for reproducing
certain stylized features of real markets.

As a third feature, a parameter has been introduced as a tuning tool, through which a variety of market characteristics,
ranging from quiescent to volatile markets, can be modeled.

An extensive analysis of a very large number of time series features evaluated by a GARCH(1, 1) analysis was performed.
It turns out that close to 100% of the lattice model-generated time series give rise to sensible analysis parameters, rendering
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Fig. 11. GARCH(1, 1) fit parameters for a sample of 100 lattice time series at χ = 0.0013. The configuration counter c has been subject to sorting with
respect to β1 .

the model results almost indistinguishable from historical market data. In particular we could verify this observation across
various market conditions and varying returns distributions.

We conclude that the model shows promise as a modeling tool for financial time series and look forward to further
development and applications.

Appendix. Gauge fixing

In the notation of Ref. [8], the probability density for a particular gauge field component has the form

pΘ(θµ(x)) ∝ exp(−β(L̄Θ exp(θµ(x))+ exp(−θµ(x))LΘ)) (A.1)

where LΘ and L̄Θ are positive coefficients independent of θµ(x). They reflect the (local) environment of the link variable.
Under a gauge transformation, writing

g(x) = eh(x), (A.2)
we have

θµ(x)→ θ ′µ(x) = h(x)+ θµ(x)− h(x+ eµ) (A.3)

LΘ → L′Θ = eh(x)LΘe−h(x+eµ) (A.4)

L̄Θ → L̄′Θ = eh(x+eµ)L̄Θe−h(x). (A.5)

The transformation laws for LΘ and L̄Θ can be derived directly by an examination of the lattice action S[Θ, Φ, Φ̄]. They are
also obvious from the fact that the action is gauge invariant and the arguments of the exponential functions of (A.1) are
made up from invariant contributions to it. We now choose the gauge transformation by requiring the new coefficients to
be equal

L′Θ
L̄′Θ
= e2h(x)

LΘ

L̄Θ

e−2h(x+eµ)
= 1, (A.6)
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or

h(x+ eµ)− h(x) =
1
2
log


LΘ

L̄Θ


. (A.7)

A solution of (A.7) is

h(x+ eµ) =
λ+ 1

4
log


LΘ

L̄Θ


(A.8)

h(x) =
λ− 1

4
log


LΘ

L̄Θ


, (A.9)

where λ is a real parameter.1 On all other sites, besides x and x + eµ, the gauge transformation function h(x) is arbitrary.
(For definiteness one may choose it to be zero.) In the new gauge, using (A.6), we have

L̄′Θeθ ′µ(x)
+ e−θ ′µ(x)L′Θ = 2


L′Θ L̄′Θ cosh(θ ′µ(x)). (A.10)

Thus, the probability distribution function is

p′Θ(θ ′µ(x)) ∝ exp

−2β


L′Θ L̄′Θ cosh(θ ′µ(x))


. (A.11)

Dropping the primes gives (21). Citing LΘ L̄Θ = L′Θ L̄′Θ , we note that the variance of the the probability distribution function
is not altered by the gauge transformation.

Again, in the notation of Ref. [8], the probability density for a particular matter field component has the form

pΦ(φµ(x)) ∝ exp(−β(L̄Φ exp(φµ(x))+ exp(−φµ(x))LΦ)) (A.12)

where LΦ and L̄Φ are positive coefficients independent of φµ(x), reflecting the (local) environment of the field variable. In
this case, changing the gauge (A.2) entails the transformations

φ(x)→ φ′(x) = h(x)+ φ(x) (A.13)

LΦ → L′Φ = eh(x)LΦ (A.14)

L̄Φ → L̄′Φ = L̄Φe−h(x). (A.15)

The requirement L′Φ/L̄′Φ = 1 leads to

h(x) = −
1
2
log


LΦ

L̄Φ


, (A.16)

while the gauge function is arbitrary on all sites other than x. Proceeding in the manner above we have

L̄′Φeφ′µ(x)
+ e−φ′µ(x)L′Φ = 2


L′Φ L̄′Φ cosh(φ′µ(x)), (A.17)

and thus obtain the probability distribution function for the matter field

p′Φ(φ′µ(x)) ∝ exp(−2β

L′Φ L̄′Φ cosh(φ′µ(x))). (A.18)

Dropping the primes gives (22). Again, because of LΦ L̄Φ = L′Φ L̄′Φ , the gauge transformation does not change the variance of
the distribution.

References

[1] Louis Bachelier, Théorie de la spéculation, Annales Scientifiques de l’École Normale Supérieure Série 3 (17) (1900) 21–86. Available from:
http://www.numdam.org/item?id=ASENS_1900_3_17__21_0.

[2] Robert F. Engle, Autoregressive conditional heteroscedasticity with estimates of variance of united kingdom inflation, Econometrica 50 (1982)
987–1008.

[3] Tim Bollerslev, Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics 31 (3) (1986) 307–327. Available from:
http://EconPapers.repec.org/RePEc:eee:econom:v:31:y:1986:i:3:p:307-327.

[4] Benoit B. Mandelbrot, The variation of certain speculative prices, Journal of Business 36 (1963) 394–419.
[5] Rosario N. Mantegna, H. Eugene Stanley, Scaling behaviour in the dynamics of an economic index, Nature 376 (1995) 46–49.

http://dx.doi.org/10.1038/376046a0.

1 It may be used to control the effect of the gauge transformation on the matter fields φ(x) and φ(x+ eµ).

http://www.numdam.org/item?id%3DASENS_1900_3_17__21_0
http://EconPapers.repec.org/RePEc:eee:econom:v:31:y:1986:i:3:p:307-327
http://dx.doi.org/doi:10.1038/376046a0


B. Dupoyet et al. / Physica A 391 (2012) 4350–4363 4363

[6] Rosario N. Mantegna, H. Eugene Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance, Cambridge University Press, New
York, 2000.

[7] Thomas Lux, Michele Marchesi, Scaling and criticality in a stochastic multi-agent model of a financial market, Nature (1999) 498–500.
[8] B. Dupoyet, H.R. Fiebig, D.P. Musgrove, Gauge invariant lattice quantum field theory: implications for statistical properties of high frequency financial

markets, Physica A: StatisticalMechanics and its Applications 389 (1) (2010) 107–116. http://dx.doi.org/10.1016/j.physa.2009.09.002. Available from:
http://www.sciencedirect.com/science/article/pii/S0378437109007377.

[9] B. Dupoyet, H.R. Fiebig, D.P. Musgrove, Replicating financial market dynamics with a simple self-organized critical lattice model, Physica A: Statistical
Mechanics and its Applications 390 (18–19) (2011) 3120–3135. http://dx.doi.org/10.1016/j.physa.2011.04.017. Available from:
http://www.sciencedirect.com/science/article/pii/S0378437111003116.

[10] Kirill Ilinski, Physics of Finance—Gauge Modelling in Non-Equilibrium Pricing, John Wiley & Sons, New York, 2001.
[11] I. Montvay, G. Münster, Quantum Fields on the Lattice, Cambridge University Press, Cambridge, UK, 1994.
[12] M. Creutz, Quarks, Gluons and Lattices, Cambridge University Press, 1983.
[13] Joseph L. McCauley, Dynamics of Markets: The New Financial Economics, second ed., Cambridge University Press, 2009.
[14] Per Bak, Kim Sneppen, Punctuated equilibrium and criticality in a simple model of evolution, Physical Review Letters 71 (24) (1993) 4083–4086.

http://dx.doi.org/10.1103/PhysRevLett.71.4083.
[15] Per Bak, How Nature Works: The Science of Self-Organized Criticality, Copernicus, New York, 1996.
[16] Maya Paczuski, Sergei Maslov, Per Bak, Avalanche dynamics in evolution, growth, and depinning models, Physical Review E 53 (1) (1996) 414–443.

http://dx.doi.org/10.1103/PhysRevE.53.414.
[17] S. Elitzur, Impossibility of spontaneously breaking local symmetries, Physical Review D 12 (1975) 3978–3982.

http://dx.doi.org/10.1103/PhysRevD.12.3978. Available from: http://link.aps.org/doi/10.1103/PhysRevD.12.3978.
[18] Asger Lunde, Peter R. Hansen, A forecast comparison of volatility models: does anything beat a GARCH(1, 1)? Journal of Applied Econometrics 20 (7)

(2005) 873–889. Available from: http://ideas.repec.org/a/jae/japmet/v20y2005i7p873-889.html.

http://dx.doi.org/doi:10.1016/j.physa.2009.09.002
http://www.sciencedirect.com/science/article/pii/S0378437109007377
http://dx.doi.org/doi:10.1016/j.physa.2011.04.017
http://www.sciencedirect.com/science/article/pii/S0378437111003116
http://dx.doi.org/doi:10.1103/PhysRevLett.71.4083
http://dx.doi.org/doi:10.1103/PhysRevE.53.414
http://dx.doi.org/doi:10.1103/PhysRevD.12.3978
http://link.aps.org/doi/10.1103/PhysRevD.12.3978
http://ideas.repec.org/a/jae/japmet/v20y2005i7p873-889.html

	Arbitrage-free self-organizing markets with GARCH properties: Generating them in the lab with a lattice model
	Introduction
	Lattice model
	Updating strategy
	Results
	Conclusion
	Gauge fixing
	References


