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INTRINSIC BUBBLES AND FAT TAILS
IN STOCK PRICES: A NOTE

PRASAD V. BIDARKOTA AND BRICE V. DUPOYET
Florida International University

We study the constant discount rate present value model for stock pricing in a stochastic
setting where the exogenous dividend stream is modeled as a random walk with
innovations drawn from the family of stable distributions. We derive an exact analytical
solution for the fundamental stock price. We evaluate the ability of the model
fundamentals and the dividends-driven intrinsic bubbles to explain the observed variation
in annual U.S. stock prices. We compare results obtained in this setting with those from
the traditional model where all stochastic processes are driven by Gaussian shocks.
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1. INTRODUCTION

Financial models of asset pricing traditionally have not done a very good job
of explaining observed variation in stock prices. The failure seems to stem from
an inability of pricing models to generate sufficient variation in implied price-
dividend ratios. For instance, the constant discount factor present value model
with a random walk process for dividends implies a constant price-dividend ratio,
whereas the observed series shows great fluctuations over time (Leroy and Porter,
1981; Shiller, 1981).

One method to generate nonconstant price-dividend ratios in this model is to
entertain solutions to asset prices that do not satisfy the transversality condition.
Such solutions that are rational and depend only on the fundamentals of the model
and not on any extraneous factors (such as calendar time) are termed as rational
intrinsic bubbles by Froot and Obstfeld (1991).

In the linear present value model with exogenous dividends as the only fun-
damentals, intrinsic bubbles turn out to be nonlinear deterministic functions of
dividends. Their nonlinear nature allows bubble solutions to generate nonconstant
price-dividend ratios, and allows them to capture excess sensitivity of stock prices
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to movements in dividends. However, the nonlinear nature of bubbles also implies
that they are explosive in nature. With high values of dividends the bubble com-
ponent of stock prices will be very large. This remains an unsatisfactory feature
of bubble solutions to the present value model.

Recent literature suggests that the degree of nonlinearity required to generate
observed variation in a data series is reduced when one accounts for any fat tails
that may exist in the empirical distributions of the data (Bidarkota, 2000). There
is a long and celebrated literature documenting fat tails in stock prices, going
back to early work by Mandelbrot (1963). McCulloch (1996) provides a summary
of evidence on fat tails in stock prices. In a more recent paper, Lux and Sornette
(2002) demonstrate theoretically that stock prices driven by processes with rational
bubble components exhibit fat tails.

Mandelbrot (1963) advocated the use of stable distributions for modeling these
fat tails. McCulloch (1996) provides a comprehensive survey on the financial
applications of stable distributions. These distributions are the natural extensions
of Gaussian distributions, which are widely used on account of their convenience
and ease of analytical tractability. Gaussian errors are also often motivated by
their Central Limit attributes. If financial markets evolve as an outcome of several
individually unimportant decisions of a large number of investors, then one may
appeal to the Central Limit Theorem and assume that stock prices can be modeled
as Gaussian processes. However, exactly the same argument holds in the stable
case as well since the Generalized Central Limit Theorem dictates that the limiting
distribution of such a process must belong to the more general class of stable
distributions of which the Gaussian is just one member (Zolotarev, 1986).

In this paper, we study rational intrinsic bubbles in the constant discount factor
present value model where the only exogenous fundamentals (dividends) evolve as
a random walk stochastic process with innovations that have stable distributions.1

We derive an exact formula for the present value stock prices in such a setting. We
apply this model to analyze annual U.S. stock price data over the last century. We
study to what extent the present value stock prices, derived in a stochastic setting
that admits fat tails in dividend realizations, matches observed movements in stock
prices. We then explore the role of intrinsic bubbles in such a setting. Because our
assumed stochastic processes are able to model fat tails in dividends and price data,
we expect the contribution of the nonlinear bubble term in rationalizing observed
stock prices to be diminished. We compare our results with those obtained within
a Gaussian setting that does not account for fat tails.

Driffill and Sola (1998) also study intrinsic bubbles in the present value model,
assuming that dividends follow a Markov switching process proposed by Hamilton
(1989). They find that the incremental explanatory power of the bubble component
over the present value fundamental component is significantly reduced when
discrete regime changes are allowed in the mean and volatility of the dividends
process. Ackert and Hunter (1999) demonstrate that the nonlinear relationship
between stock prices and dividends may also arise from management decisions
regarding dividend payouts.
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Alternative rationalizations, such as fads and periodically collapsing bubbles,
also have been proposed for the failure of the present value model, as in Blanchard
(1979), Evans (1991), and Brooks and Katsaris (2005).

The paper is organized as follows. We set out the present value model for stock
prices in Section 2 and describe what we mean by the fundamental solution and a
bubble solution. In Section 3 we derive the fundamental stock price and the bubble
under the assumption that dividends evolve as a random walk process with stably
distributed innovations. We also compare this solution with that obtained under
a Gaussian random walk for dividends. In Section 4, we undertake an empirical
study to determine to what extent the present value model, with and without the
bubble components, explains the observed variation in stock prices in stable and
Gaussian settings. We summarize our main findings in the concluding section.

2. THE PRESENT VALUE MODEL

The present value model with a constant discount rate is given by:

Pt = e−rEt [Dt + Pt+1]. (1)

Here, Pt is the real price of a share at the beginning of period t, Dt are the real
dividends per share paid out over period t, r is the nonstochastic and constant
discount rate, Et is the mathematical expectation, conditioned on information
available at the start of period t.

On forward iteration, the present value equation yields:

Pt =
∞∑
s=t

e−r(s−t+1) Et (Ds) + lim
s→∞e−rsEt (Ps). (2)

One solution to stock prices in the above equation, denoted P
pv
t , is obtained by

imposing the transversality condition:

lim
s→∞ e−rsEt (Ps) = 0. (3)

Imposing the transversality condition on equation (2) gives:

P
pv
t =

∞∑
s=t

e−r(s−t+1) Et (Ds) . (4)

Thus, this equation provides the fundamental value of the stock price. One specifies
an exogenous stochastic process for dividends and evaluates P

pv
t .

There exist other solutions to the present value model given in equation (1) that
do not satisfy the transversality condition in equation (3). For instance, let {Bt }∞t=0
be any sequence of random variables that satisfy:

Bt = e−rEt {Bt+1}. (5)
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One can easily show that (P
pv
t + Bt) satisfies equation (1) but violates equation

(3) for all Bt �= 0.
If Bt is constructed as a function of the fundamentals alone, that is, as a function

of the dividends Dt alone in the present value model of equation (1), it is termed
an intrinsic rational bubble by Froot and Obstfeld (1991). Intrinsic bubbles turn
out to be a nonlinear function of dividends. Their exact functional form depends
on the assumed stochastic process for the dividends.

3. SOLUTION TO THE MODEL

In this section, we obtain an exact analytical solution for the present value stock
price P

pv
t when the dividend growth rate follows a random walk with drift with

innovations drawn from the family of stable distributions. The Gaussian random
walk emerges as a special case. We also derive conditions under which a posited
functional form for Bt satisfies all the conditions for a rational intrinsic bubble.

3.1. Specification of the Dividends Process

We assume that log-dividends stochastically evolve according to the law of motion:

ln(Dt) = µ + ln(Dt−1) + ξt , ξt ∼ iid S(α, β, c, 0). (6)

Here, S(α, β, c, 0) represents a stable distribution with characteristic exponent
α, skewness parameter β, scale parameter c, and location parameter set to zero.
Appendix A defines these distributions and lists some of their properties.

For s ≥ t , equation (6) implies that:

Ds = Dt exp[(s − t) µ + ξt+1 + ξt+2 + · · · + ξt+(s−t)]. (7)

Substituting this into the solution for the fundamental stock price given in equation
(4) yields:

P
pv
t = Dt

∞∑
s=t

e−r(s−t+1)+(s−t)µ Et [exp(ξt+1 + ξt+2 + · · · + ξt+(s−t))]. (8)

In deriving equation (8), we assume that Dt is contained in the information set
available at the start of period t on which the expectations Et are based.

3.2. Finiteness of Conditional Expectations

Given the iid nature of the innovations {ξt } to the dividends process, the expecta-
tions term on the right hand side of equation (8) reduces to:

Et [exp(ξt+1 + ξt+2 + · · · + ξt+(s−t))]

= Et [exp(ξt+1)]Et [exp(ξt+2)] . . . [Et exp(ξt+(s−t))]. (9)
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When {ξt } is iid normal, each of the conditional expectations on the right-hand
side of the above equation are finite and are given by the moment generating func-
tion. Under most commonly used fat-tailed distributions including the Student-t,
such conditional expectations are generally infinite. This point has been noted by
Geweke (2001) in a more general setting. Thus, when {ξt } is iid nonnormal stable,
that is, when the exponent α characterizing these innovations is less than 2, each
of the conditional expectations is generally infinite. An exception occurs when the
skewness parameter β = −1 (see Appendix A). Equation (A8) gives the formulas
for the conditional expectations under β = −1.

In the remainder of this paper, we are forced to work with stable distributions
with β = −1. One could in principle avoid having to impose β = −1 by truncating
the stable distributions, or dampening them as in Bidarkota and Dupoyet (2006).
However, in this case, one cannot derive an analytical formula for the present value
stock price P

pv
t as is done in the next subsection, nor can one obtain a parametric

form for the bubble component B(Dt) as is done subsequently.

3.3. Solving for the Present Value Stock Price

Thus, under the assumption that dividends evolve according to the stochastic
process given in equation (6) with β = −1, one can now derive the present value
stock price by evaluating the right hand side of equation (8). The expression for
P

pv
t differs in the case when the characteristic exponent α = 1 from that when

α �= 1.2 In the rest of this paper, we focus our attention on the more general case
α �= 1. All the results that follow for α �= 1 are also applicable for α = 1 with
appropriate modifications. The required derivations for α = 1 do not pose any
additional difficulties, and can be easily adapted from those given for α �= 1 in
this paper.

Appendix B shows that the present value stock price is given by:

P
pv
t = κDt (10)

where:
κ = (1/{exp(r) − exp[µ − cα sec(πα/2)]}). (11)

For convergence of the infinite summation in equation (8), we need
r > µ − cα sec(πα/2).

3.4. Intrinsic Rational Bubbles

Let us postulate that intrinsic rational bubbles take the form given in Froot and
Obstfeld (1991):

B(Dt) = a0D
λ
t . (12)

Here, λ > 0 for the bubble to grow with an increase in dividends and a0 > 0 to
ensure non-negativity of stock prices.
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Appendix C shows that the functional form for the intrinsic bubble in equation
(12) satisfies equation (5) defining a bubble, provided that λ is chosen to satisfy:

r = λµ − (λc)α sec(πα/2). (13)

The inequality r > µ − cα sec(πα/2) can be used to show that λ > 1 whenever
the characteristic exponent α > 1.

3.5. Solution under Gaussian Random Walk

If the process for dividend growth rates is a Gaussian random walk plus drift,
that is, if the innovations in equation (6) were Gaussian, then the solution for the
present value stock price is easily obtained by setting α = 2 in equations (10) and
(11). One can readily show that the expression obtained for the stock prices in this
case is identical to the one given in Froot and Obstfeld (1991).

The conditions needed for convergence of the price-dividend ratio as well as
the conditions for B(Dt) to be a rational intrinsic bubble are also identical to those
in Froot and Obstfeld (1991).

4. EMPIRICAL ASSESSMENT OF THE MODEL

4.1. Characteristics of the Data

All data series used are taken from Shiller’s (1989) data appendix. The nominal
stock prices are annual series of January values of the Standard and Poor Composite
Stock Price Index (series 1 in Shiller’s dataset). The nominal dividend series are
dividends per share (series 2 in Shiller’s dataset). The producer price index is used
as the deflator to obtain real values (series 5 in Shiller’s dataset). Although the data
series are available through the year 1999, we restrict ourselves to year 1988. This
allows us to compare our results with those of Froot and Obstfeld (1991). Also, in
the 1990s, many firms increasingly used stock buybacks instead of dividends to
pay out funds to shareholders. Although all three series are available going back
to 1871, we start the series in 1900 because Froot and Obstfeld (1991) use data
starting at this time point. They provide reasons for omitting data from the earlier
three decades.

Summary statistics (not reported) on real dividend growth rates indicate strong
and statistically significant leptokurtosis, and negative skewness. Normality is
strongly rejected. This provides the basis for our empirical specification that
follows in the next subsection. Figure 1 plots the real stock prices, real dividends
and their growth rates, and the price-dividend ratios.

4.2. Econometric Specification

The empirical evaluation of the present value model requires specification of
an exogenous stochastic process for dividends. From equation (6) and with the
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assumed β = −1, we get:

ln(Dt) = µ + ln(Dt−1) + ξt , ξt ∼ iid S(αξ ,−1, cξ , 0). (14)

From the discussion immediately following equation (5), a complete solution
to the present value model can be written as:

Pt = P
pv
t + Bt . (15)

This satisfies the present value model given by equation (1) but violates the
transversality condition given in equation (3) for all Bt �= 0. Using equations (10),
(12), and (13), one can write:

Pt = κDt + a0D
λ
t . (16)

This can be rewritten after dividing through by Dt as:

Pt

Dt

= κ + a0D
λ−1
t . (17)

Motivated by this, one can then write down an econometric model for the stock
price-dividend ratio:

Pt

Dt

= b0 + b1D
λ−1
t + ηt , ηt ∼ iid N

(
0, σ 2

η

)
. (18)

where b0, b1, λ > 0. The error term ηt is assumed to be independent of the
innovations ξt , and of the dividends Dt , at all leads and lags. We follow standard
practice in the literature by augmenting the stock price obtained by solving the
present value equation with a regression residual when taking the model to the
data. As noted by Hamilton (1986), the regression residual ηt captures omitted
variables such as time-varying real interest rates, risk premia, and changes in tax
laws.

The empirical assessment of the present value model proceeds with estimation
of equations (14) and (18), subject to:

r = λµ − (λcξ )
αξ sec(παξ/2). (19)

The null hypothesis of no bubbles implies that b0 = κ and b1 = 0, whereas the
alternative hypothesis of a bubble implies that b0 = κ and b1 > 0.

4.3. Random Walk Model Estimates for Real Dividends

Table 1 presents empirical results on maximum likelihood estimates of equation
(14). The first panel reports results on fitting a random walk with stable innovations
to real dividends and the second panel reports results on fitting a Gaussian random
walk. An LR test for α = 2 (i.e., a test for Gaussian random walk as opposed
to stable random walk) is easily rejected at better than the 5% significance level.
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TABLE 1. Maximum likelihood model estimates

ln(Dt) = µ + ln(Dt−1) + ξt , ξt ∼ iid S(αξ ,−1, cξ , 0)

Stable Random Walk αξ cξ µ log L 2	 log L for α = 2

1.900 0.084 0.029 55.678 5.27
(0.000) (0.008) (0.002) (0.02)

Gaussian Random Walk σ 2
ξ µ log L

0.018 0.013 53.043
(0.003) (0.014)

Notes:
1. When α = 2, errors are Gaussian with variance σ 2 = 2c2.
2. Numbers in parentheses for panel 1 are the standard errors.
3. 2	 log Lgives the likelihood ratio (LR) test statistic. P-value from the χ2

1 distribution is in parentheses.

Thus, the process for dividends adopted in the paper is an improvement over a
Gaussian random walk used in Froot and Obstfeld (1991).

Figure 2 plots the unconditional distributions of the fitted stable and Gaussian
models, along with the kernel density. As the plots suggest, the stable model
provides a better fit to the kernel density. At the same time, it does not appear to be
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a great departure from the Gaussian distribution despite the skewness parameter
being maximally negative, that is, β = −1. This is a consequence of the fact the
α estimate of 1.90 is so close to 2, the value for Gaussian distributions.

Following Froot and Obstfeld (1991), the constant discount factor is chosen
to be r = 0.086.3 Using the estimates from maximum likelihood estimation of
the random walk model, we verify that the convergence condition required to
obtain the present value stock price in equations (10) and (11) is satisfied. The
model-implied price-dividend ratio P

pv
t /Dt ≡ κ is calculated to be 19.43. This

agrees closely with the mean price-dividend ratio of 21.59. Solving the nonlinear
equation (19) yields λ = 1.92.

Estimates for a Gaussian random walk for dividends imply a price-dividend
ratio κ of only 14.65, considerably below the empirically observed ratio. The
exponent defining the bubble component λ is higher at 2.50.4 For comparison, we
note that Froot and Obstfeld (1991) obtain an estimate of κ = 14 and λ = 2.74.

A test for no cointegration between Pt − κDt and Dλ
t is rejected in both the

stable and Gaussian cases in favor of cointegration, indicating a long run nonlinear
relationship between stock prices and dividends, as in Ma and Kanas (2004).

Thus, the stable model for dividends implies a constant theoretical price-
dividend ratio that is close to the empirically observed mean. The Gaussian model
also implies a constant theoretical price-dividend ratio but its value is low when
compared to the empirically observed mean.

Also, the stable model gives a bubble component that is considerably less
nonlinear (as measured by the value of the exponent λ) than that under the Gaussian
model. This is in accord with the fact that accounting for fat tails reduces the degree
of nonlinearity required to explain observed variation in price-dividend ratios (see,
for instance, Bidarkota, 2000).

4.4. Price-Dividend Ratio Regression Results

As noted at the end of subsection (4b), the empirical evaluation of the present
value model could proceed by estimating equations (14) and (18), subject to the
restriction given in equation (19). One could estimate all the parameters of the
model jointly, by simultaneous estimation of the two equations. Or, alternatively,
one could estimate equation (14) first, set b0 = κ and λ equal to the value obtained
by solving equation (19), and then estimate equation (18).

In what follows, we always estimate equations (14) and (18) individually rather
than simultaneously. We set the exponent on the bubble term λ at its value obtained
by solving equation (19). Froot and Obstfeld (1991) do estimate the price-dividend
ratio regression this way and also alternatively by estimating λ along with the other
parameters of equations (14) and (18) simultaneously. However, their inferences
on the statistical significance of the bubble component in the two instances are
qualitatively similar.

Table 2 presents empirical results on maximum likelihood estimation of the
nonlinear price-dividend regression given in equation (18). The first panel presents
regression results for a stable random walk process for dividends and the second
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TABLE 2. Price-Dividend ratio regression estimates

Pt

Dt

= b0 + b1D
λ−1
t + ηt , ηt ∼ iid N

(
0, σ 2

η

)
.

Panel 1: Stable Random Walk

2	 log L 2	 log L

b0 b1 σ 2
η log L for b0 = κ for b1 = 0

Unrestricted 11.028 2.306 17.363 −253.30 30.88 48.74
model (1.384) (0.286) (2.603) (2.7e-8) (2.9e-12)

19.433 0.658 24.562 −268.74 30.70
(restricted to κ) (0.109) (3.682) (3.0e-8)

Restricted 21.591 30.022 −277.67 12.84
model (0.581) (4.500) (3.4e-4)

19.433 34.677 −284.09
(restricted to κ) (5.198)

Panel 2: Gaussian Random Walk

2	 log L 2	 log L

b0 b1 σ 2
η log L for b0 = κ for b1 = 0

Unrestricted 14.867 0.529 16.863 −252.00 0.06 51.34
model (0.917) (0.063) (2.528) (0.81) (7.8e-13)

14.655 0.542 16.872 −252.03 136.40
(restricted to κ) (0.030) (2.529) (1.6e-31)

Restricted 21.591 30.022 −277.67 85.12
model (0.581) (4.500) (2.8e-20)

14.655 78.130 −320.23
(restricted to κ) (11.712)

Notes:
1. Unrestricted model is one in which b1 is estimated. Restricted model sets b1 = 0.
2. Numbers in parentheses for the parameter estimates are the Hessian-based standard errors.
3. 2	 log Lgives the likelihood ratio (LR) test statistics. P-values from the χ2

1 distribution are in parentheses.

panel presents regression results for a Gaussian random walk process. Results
are presented both for an unrestricted model in which the coefficient on the
bubble component b1 is estimated and a restricted model in which we set b1 = 0.
Furthermore, within the unrestricted and restricted models, results are presented
both for a version in which the intercept term b0 is estimated as a free parameter
and a restricted model in which we set b0 = κ .

For the fully unrestricted model, we find from the first row that the intercept
term b0 is estimated to be 11.03. This is considerably lower than the theoretical
price-dividend ratio κ of 19.43. The likelihood ratio (LR) test indicates that the
estimated b0 is statistically significantly different from κ . The coefficient on the
bubble component b1 is estimated to be 2.31. The LR test for b1 = 0 is strongly
rejected.
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FIGURE 3. Results with stable random walk.

Panel 2 presents regression results with a Gaussian random walk process for
dividends. The estimated b0 of 14.87 is now much closer in value to the theoretical
price-dividend ratio κ of 14.65 under a Gaussian random walk for dividends but
much lower than the empirically observed mean price-dividend ratio of 21.59. In
contrast to the results in panel 1 the hypothesis that b0 = κ is not rejected in this
case. This inference is reached by Froot and Obstfeld (1991) with the Gaussian
random walk dividend process as well. The coefficient on the bubble component
b1 is lower at only 0.53. However, once again, one can easily reject the absence of
bubbles.

Figures 3–4 plot the observed price-dividend ratios and prices, along with the
fitted values from the unrestricted models in panels 1 and 2 of Table 2, respectively,
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FIGURE 4. Results with Gaussian random walk.

with b0 restricted to be equal to κ . The contribution of the fundamental present
value component and that of the bubble in accounting for observed variation in
P/D ratios and stock prices is clearly evident in the figures. As the first panels
of the two figures indicate, the stable model gives a better fit to the long run
observed average P/D ratios than the Gaussian model. As the second panels of
the two figures indicate, the fundamental stock price from the stable model tracks
the observed stock prices much more closely than the Gaussian model. With the
fundamental and the bubble components combined providing very similar overall
fit across the stable and Gaussian models, it follows that the role of the bubble
component is diminished in the stable setup. This conclusion is in line with the one
reached by Driffill and Sola (1998) who also find a diminished role for the bubble
once discrete regime changes are entertained for the exogenous dividends process.

4.5. Discussion of Results

The P/D regression results reported in Table 2 and discussed in the previous
subsection indicate that we can reject the null hypothesis of the absence of bubbles
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across both panels in Table 2. This inference is robust to whether or not we impose
b0 = κ in the P/D regressions. This conclusion is in line with the inference
in Froot and Obstfeld (1991). Thus, accounting for fat tails does not affect the
qualitative outcome of testing for the absence of bubbles.

An important difference between our results with and without fat tails is the
estimate of the exponent on the bubble component λ. As reported in subsection
(4c), the Gaussian random walk for log-dividends yields an estimate for λ of 2.50
whereas the estimate implied by the stable random walk is only 1.92. This is in line
with our contention that accounting for fat tails reduces the degree of nonlinearity
of the bubble term needed to explain observed variation in stock prices.

As Figures 3 and 4 vividly illustrate, the fundamental present value stock
price tracks the observed stock prices more closely with fat tails than without.
Thus, accounting for fat tails reduces the discrepancy between the observed and
fundamental present value stock prices, thereby diminishing the role for bubbles.

5. CONCLUSIONS

We studied the present value model with a constant discount factor. The exogenous
dividends are assumed to evolve as a random walk with innovations drawn from
the family of stable distributions. We derived an analytical formula for the present
value stock price in such a setting. Further extending the analysis in Froot and
Obstfeld (1991) that developed a Gaussian framework, we derived a functional
form for intrinsic bubble that violates the transversality condition.

We estimated the model with annual U.S. stock price and dividends data over
the last century. Our statistical rejection of the absence of a bubble component in
annual U.S. stock price data is unchanged when we account for fat tails in dividends
and stock price data. However, accounting for fat tails leads to an intrinsic bubble
component that is less nonlinear, and consequently less explosive, than in the
Gaussian setup. Fat tails also lead to a lower discrepancy between the observed
and present value model implied fundamental stock prices, thereby diminishing
the role of intrinsic bubbles in explaining observed variation in stock prices.

NOTES

1. The associate editor notes whether the “assumption of risk neutrality is particularly implausible
when there are fat tails.” This is a good point that merits investigation in the context of an asset pricing
model such as that of Lucas (1978) that allows for risk aversion on the part of investors and a fat tailed
process for dividends (as, for instance, in Bidarkota and McCulloch 2003 or Bidarkota and Dupoyet
2006). However, it is not obvious whether intrinsic bubbles (defined as price paths that satisfy a present
value-type equation but violate the transversality condition) can exist theoretically in the Lucas (1978)
model. Recent work by Kamihigashi (1998) shows the necessity of the transversality condition in
dynamic stochastic optimization models under very general conditions, and hence that bubbles are a
marginal phenomenon in such models (see also Montrucchio and Privileggi 2001).

2. This arises because of two reasons. One reason is that the expressions for EeX differ in the two
cases (see equation (A.8) in Appendix A). A second reason is that when we aggregate iid random
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variables with stable distributions, the expressions for the location parameter δ for the aggregate
random variable also differ in the two cases (see equation (A.7) in Appendix A).

3. This value of the discount rate exceeds the growth rate of dividends µ reported in Table 2. As
argued by Hall (2001), the possibility of a bubble component growing at a rate r that exceeds the
growth rate of fundamentals (dividends) may be unsustainable/impossible in a model with rational
forward-looking agents. We thank an anonymous referee for raising this point.

4. As equation (19) indicates, λ is implicitly a deterministic function of the discount factor r , and
the estimated dividends process parameters. The discount factor is set to a value of 0.086, whereas
the dividend process parameters are estimated from data. This means λ would have estimation error
associated with it. It is not conceptually obvious how one may design a test to statistically compare
values of λ obtained alternatively with stable and Gaussian dividends process parameters. A further
technical difficulty arises from the highly nonlinear nature of Equation (19) that implicitly determines
λ in terms of the dividends process parameters.
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APPENDIX A

STABLE DISTRIBUTIONS AND THEIR PROPERTIES

This section draws heavily from McCulloch (1996). Stable distributions S(x; α, β, c, δ) are
determined by four parameters. The location parameter δ ∈ (−∞, ∞) shifts the distribution
to the left or right, whereas the scale parameter c ∈ (0,∞) expands or contracts it about δ,
so that

S(x; α, β, c, δ) = S[(x − δ)/c; α, β, 1, 0]. (A.1)

The standard stable distribution function has c = 1 and δ = 0. If a random variable X has
a stable distribution, it is represented as X ∼ S(α, β, c, δ).

The characteristic exponent α ∈ (0, 2] governs the tail behavior, and therefore the
degree of leptokurtosis. When α = 2, the normal distribution results, with variance 2c2.

For α < 2, the variance is infinite. When α > 1, E(X) = δ; but if α ≤ 1, the mean is
undefined.

The skewness parameter β ∈ [−1, 1] is defined such that β > 0 indicates positive
skewness. If β = 0, the distribution is symmetric stable. As α ↑ 2, β loses its effect and
becomes unidentified.

Stable distributions are defined most concisely in terms of their log-characteristic func-
tions:

ln E exp(iXt) = iδt + ψα,β(ct), (A.2)

where

ψα,β(t) =
{−|t |α[1 − iβ sign(t) tan(πα/2)] for α �= 1

−|t |[1 + iβ(2/π) sign(t) ln |t |] for α = 1
, (A.3)

is the log-characteristic function for S(α, β, 1, 0).
When α < 2, stable distributions have tails that behave asymptotically like x−α and give

the stable distributions infinite absolute population moments of order greater than or equal
to α.

Let X ∼ S(α, β, c, δ) and a be any real constant. Then (A.2) implies:

aX ∼ S[α, sign(a)β, |a|c, aδ]. (A.4)
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Let X1 ∼ (α, β1, c1, δ1) and X2 ∼ (α, β2, c2, δ2) be independent drawings from stable
distributions with a common α. Then Y = X1 + X2 ∼ S(α, β, c, δ), where

cα = cα
1 + cα

2 (A.5)

β = (
β1c

α
1 + β2c

α
2

)/
cα (A.6)

δ =
{
δ1 + δ2 for α �= 1
δ1 + δ2 + 2[βc ln(c) − β1c1 ln(c1) − β2c2 ln(c2)]/π for α = 1.

(A.7)

When β1 = β2, β equals their common value, so that Y has the same shaped distribution as
X1 and X2. This is the “stability” property of stable distributions that leads directly to their
role in the central limit theorem, and makes them particularly useful in financial portfolio
theory. When β1 �= β2, β lies between β1 and β2.

For α < 2 and β > −1, the long upper Paretian tail of X ∼ S(α, β, c, δ) makes EeX

infinite. However, when β = −1,

ln EeX =
{

δ − cα sec(πα/2), α �= 1
δ + (2c/π) ln c, α = 1

(A.8)

This formula greatly facilitates asset pricing under log-stable uncertainty.
See also Zolotarev (1986, p. 112) and McCulloch (1996).

APPENDIX B

DERIVATION OF THE PRESENT VALUE STOCK PRICE

From equation (8),

P
pv
t = Dt

∞∑
s=t

e−r(s−t+1)+(s−t)µ Et [exp(ξt+1 + ξt+2 + · · · + ξt+(s−t))] (B.1)

Substituting equation (9) into the above equation yields:

P
pv
t = Dt

∞∑
s=t

e−r(s−t+1)+(s−t)µ Et [exp(ξt+1)]Et [exp(ξt+2)] · · · Et [exp(ξt+(s−t))]. (B.2)

From equation (6), ξt ∼ iid S(α, β, c, 0). With β = −1 assumed in the derivation of
equation (10) and using equation (A.8) in Appendix A, we get:

Et [exp(ξt+1)] = Et [exp(ξt+2)] = · · · = Et [exp(ξt+(s−t))] = exp[−cα sec(πα/2)]. (B.3)

Substituting equation (B.3) into equation (B.2) yields:

P
pv
t = Dt

∞∑
s=t

e−r(s−t+1)+(s−t)µ{exp[−cα sec(πα/2)]}s−t . (B.4)
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This can be rewritten as:

P
pv
t = Dte

−r

(
1 +

∞∑
s=t+1

{exp (s − t) [−r + µ − cα sec (πα/2)]}
)

. (B.5)

The infinite summation in the above equation converges only if r > µ − cα sec (πα/2). In
this case, from the sum of an infinite geometric progression, we find:

P
pv
t = (1/{exp(r) − exp[µ − cα sec(πα/2)]})Dt . (B.6)

or
P

pv
t = κDt (B.7)

where:
κ = (1/{exp(r) − exp[µ − cα sec(πα/2)]}). (B.8)

APPENDIX C

INTRINSIC BUBBLES UNDER STABLE RANDOM WALK PLUS DRIFT

From equation (12),
B(Dt) = a0D

λ
t , a0 > 0. (C.1)

Now, B(Dt) is a rational intrinsic bubble if it satisfies equation (5), which is given as:

Bt = e−rEt {Bt+1}. (C.2)

Equation (6) implies that:
Dt+1 = Dt exp[µ + ξt+1]. (C.3)

Therefore,
Dλ

t+1 = Dλ
t exp [λµ + λξt+1]. (C.4)

From equation (6), ξt ∼ iid S(α, β, c, 0). With β = −1 and λ > 0, equation (A.4) from
Appendix A yields ξt ∼ iid S(α,−1, λc, 0). Using equation (A.8) in Appendix A, we get:

Et [exp(λξt+1)] = exp[−(λc)α sec(πα/2)]. (C.5)

Now, using equation (C.1) one can write the right-hand side of equation (C.2) as:

e−rEt {Bt+1} = e−rEt {a0D
λ
t+1}. (C.6)

Substituting equation (C.4) into equation (C.6) yields:

e−rEt {Bt+1} = a0e
−rDλ

t Et {exp[λµ + λξt+1]} (C.7)

Now, substituting equation (C.5) into equation (C.7) gives:

e−rEt {Bt+1} = a0D
λ
t exp[−r + λµ − (λc)α sec(πα/2)]. (C.8)

Thus, equation (C.2) is satisfied, provided that:

r = λµ − (λc)α sec(πα/2). (C.9)


