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We study a consumption-based asset pricing model with incomplete information and a-

stable shocks. Incomplete information leads to a non-Gaussian filtering problem.

Bayesian updating generates fluctuating confidence in the agents’ estimate of the

persistent component of the dividends’ growth rate. This has the potential to generate

time variation in the volatility of model-implied returns, without relying on discrete

shifts in the drift rate of dividend growth rates. A test of the model using US

consumption data shows that implied returns display significant volatility persistence

of a magnitude comparable to that in the data.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Models of asset pricing featuring incomplete information have been used successfully to rationalize several key stylized
facts of financial returns (David, 1997; Veronesi, 1999, 2004). The success of incomplete information models derives in part
from time varying dispersion in the posterior density of the unobserved drift rate, a feature alternatively referred to as
fluctuating confidence in David (1997) and as Bayesian uncertainty in Veronesi (2004). Time varying dispersion in the filter
or posterior density arises in these studies because the dividend drift is assumed to be subject to discrete breaks, governed
either by a Poisson arrival or Markov switching process.

In the absence of such discrete breaks, the incomplete information setting in these studies reduces to a standard linear
Gaussian state space framework for which the Bayes’ updating rule is given by the classical Kalman filter. It is well known
that in such settings, with a Gaussian prior, the Kalman filter density has a constant dispersion (after transients have died
out from startup of the filter) and specifically does not react to the arrival of new information on dividends each period.
Asset pricing and portfolio allocation problems in such a classical setting have been studied in Dothan and Feldman (1986),
Detemple (1986), Gennotte (1986), and more recently, in Brennan and Xia (2001).

A non-constant dispersion in the filter density can also be obtained without resorting to discrete breaks or non-Gaussian
priors as in Detemple (1991). Any non-Gaussian and/or nonlinear filtering setup would deliver this. Kitagawa (1987)
proposes using linear state space models with heavy-tailed errors for capturing shifts in the mean and/or variance of a time
series. One notable advantage of these models over discrete switching models is that they can capture a continuum of
regime changes.
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In this paper, we set out to study asset pricing with incomplete information in a linear non-Gaussian setting where the
exogenous dividends process is not subject to discrete breaks or regime shifts but is instead driven by stochastic shocks
with continuous fat tailed probability distributions. The point of departure for our study from the extant literature requires
an appropriate continuous probability distribution with fat tails. One immediately runs into difficulties here because, as
Geweke (2001) notes, the theory of choice under uncertainty in such settings often breaks down under the constant
relative risk-aversion (CRRA) utility function. Geweke (2001) specifically demonstrates the failure of the choice theory with
Student-t distributions in such circumstances.

The family of a-stable distributions provides a way out of this difficulty. These distributions have a fairly long history in
finance, going back to early work by Mandelbrot (1963). A comprehensive survey on the financial applications of these
distributions is provided by McCulloch (1996). The a 2 ð0;2� parameter (along with three other parameters including a
skewness parameter b 2 ½�1;1�) characterizes these distributions, with a ¼ 2 resulting in the Gaussian distribution and
ao2 resulting in fat-tailed distributions. While the difficulty noted by Geweke (2001) also applies to the general family of
a-stable distributions with arbitrary skewness b, the sub-family of these distributions with maximal negative skewness
b ¼ �1 provides an operational theory of choice under uncertainty.

In recent work, Carr and Wu (2003) use this sub-family of a-stable distributions with maximal negative skewness for
capturing the observed behavior of the volatility smirk implied by S&P 500 option prices. They too are forced to work with
these distributions by imposing b ¼ �1 in order to ensure finiteness of call option values.

Consequently, in this paper we study asset pricing with incomplete information in a setting where the observed
dividend growth rate is modeled as the sum of an unobservable persistent component, assumed to be an autoregressive
(AR) process driven by a-stable shocks with maximal negative skewness, and noise. An incomplete information Gaussian
asset pricing model is a special case. We characterize the solution to the asset pricing model in such a setting. We then
calibrate the model to data on quarterly US per capita consumption, and study the equilibrium implications of the time
varying dispersion in the filter density on the characteristics of implied returns. Specifically, we examine the ability of the
model to reproduce some key stylized facts of observed returns, including the magnitudes of their key moments, time-
varying volatility, and predictability.

The paper is organized as follows. We describe the economic environment and the asset pricing model in Section 2. We
study the solution to the model in Section 3. We tackle empirical issues including estimation of the model in Section 4. We
analyze the model implications, including those on implied rates of return, in Section 5. The last section provides some
conclusions derived from the paper.

2. The asset pricing model

Is this section we lay out the economic environment, including specification of exogenous stochastic processes and
information structure in the model.

2.1. Pure exchange economy

In a single good Lucas (1978) economy, with a representative utility-maximizing agent and a single asset that pays
exogenous dividends of non-storable consumption goods, the first-order Euler condition is

PtU
0
ðCtÞ ¼ yEtU

0
ðCtþ1Þ½Ptþ1 þ Dtþ1�. (1)

Here, Pt is the real price of the single asset in terms of the consumption good, U0ðCÞ is the marginal utility of consumption C

for the representative agent, y is a constant subjective discount factor, D is the dividend from the single productive unit,
and Et is the mathematical expectation, conditioned on information available at time t.

Assume a CRRA utility function with risk-aversion coefficient g

UðCÞ ¼ ð1� gÞ�1Cð1�gÞ; gX0. (2)

Let vt denote the price–dividend ratio, i.e. vt ¼ Pt=Dt . Since consumption simply equals dividends in this simple model,
i.e. C ¼ D every period, Eq. (1) reduces to

vt ¼ Ety Dtþ1=Dt

� �1�g
½vtþ1 þ 1�. (3)

Thus, this equation implicitly defines the solution to the asset pricing problem in this model. One specifies an exogenous
stochastic process for dividends and solves for the price dividend ratio vt.

2.2. Simplifying the difference equation for the P/D ratios

Let xt ¼ lnðDt=Dt�1Þ denote the natural logarithm of the dividend growth rate. Defining mtþ1 � y exp½ð1� gÞxtþ1�, we can
rewrite Eq. (3) as

vt ¼ Etmtþ1½vtþ1 þ 1�. (4)
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On forward iteration and imposing the transversality condition, this equation yields:

vt ¼
X1
i¼1

Et

Yi

j¼1

mtþj

0
@

1
A. (5)

Thus, the solution to the price–dividend ratio can be found by evaluating the conditional expectations on the right hand-
side of Eq. (5), under a specified exogenous stochastic process for the dividend growth rates.

2.3. Specification of the endowment process

We assume that dividend growth rates stochastically evolve according to the following process:

xt ¼ mt þ �t ; �t�iid Nð0;s2Þ, (6a)

mt � m̄ ¼ rðmt�1 � m̄Þ þ Zt ; 0pro1; Zt�iid Sða;b; c;0Þ. (6b)

We assume that �t and Zt are independent of each other contemporaneously as well as at all leads and lags. Here, Sða;b; c;0Þ
represents a stable distribution with characteristic exponent a 2 ð0;2�, skewness parameter b, scale parameter c, and
location parameter set to 0. McCulloch (1996) provides a review of these distributions and lists some of their key
properties.

Based on these properties, the characteristic exponent a is restricted to be greater than one so that the innovation term
Zt has a well-defined mean, equal to the location parameter, assumed zero in Eq. (6b). From an empirical viewpoint, this
restriction is completely innocuous, since for most economic time series a is often estimated to be much higher. For
technical reasons that will be evident in Section 3, we need the AR coefficient r in Eq. (6b) to be non-negative. This is not a
limitation of the model from an empirical viewpoint since, as we shall see in Section 4.3, r is estimated to be positive and
large.

We also study a benchmark case where, in Eq. (6b), Zt�iid Nð0;s2
ZÞ.

1 From the properties of stable distributions, this is
obtained by setting a ¼ 2 in the process given in Eq. (6b). In this case, b loses its effect on the distribution of Zt and is
unidentified, and s2

Z ¼ 2c2.

2.4. Incomplete information structure of the economy

We assume that agents in the economy have full knowledge about the structure of the economy. They know the
stochastic process governing the evolution of the dividend growth rates, including the parameters of the process. They
observe the dividend stream (and hence the realized dividend growth rates xt as well). However, we assume that agents do
not ever observe the persistent component mt of the dividend growth rates.

Agents need to form conditional expectations of mt in order to compute the expected future dividend payouts, and hence
determine equilibrium prices. We assume that agents form conditional expectations on mt based on Bayesian updating
rules. The filtering problem facing the agents is complicated here by the assumption of a non-Gaussian distribution for Zt.

In the benchmark case where Zt is Gaussian, agents face a linear Gaussian filtering problem. In this case, the conditional
density of mt is Gaussian (see, for instance, Harvey, 1992, Chapter 3) and, therefore, completely specified by its conditional
mean and variance. These are given recursively by the classic Kalman filter. When Zt is non-Gaussian, Bayesian updating
results in a nonlinear globally optimal filter that leads to a recursive form for the conditional probability density
pðmtjx1; x2; . . . ; xtÞ.

2.5. Benchmark case-complete information

In a benchmark full information economy, we assume that the innovation �t in Eq. (6a) has zero variance (i.e. �t is
trivially zero). In this case, mt ¼ xt , and therefore agents actually observe mt . This model is studied in Bidarkota and
McCulloch (2003). A Gaussian version of such a full information model where Zt�iid Nð0;s2

ZÞ is studied in Burnside (1998).

3. Solution to the model

We now proceed to evaluate Eq. (5) for the price–dividend ratio, and study some of its properties, under the assumed
process for the dividend growth rates given in Eqs. (6).
1 The model in Eqs. (6) has a reduced form ARMA(1,1) representation. Bansal and Yaron (2004) study such a model with conditionally heteroskedastic

Gaussian errors with non-expected recursive utility specification of Epstein and Zin (1989). Note that in their setup, unlike ours as will become evident in

the next subsection, there is complete information.



ARTICLE IN PRESS

P.V. Bidarkota et al. / Journal of Economic Dynamics & Control 33 (2009) 1314–1331 1317
3.1. Finiteness of conditional expectations

Theory of choice under uncertainty with CRRA utility and fat-tailed distributions is extremely fragile (Geweke, 2001).
The difficulty stems from the non-existence of the conditional expectation in Eq. (5) for most common leptokurtic
distributions, including the Student-t. Under the assumed distribution Zt�iid Sða;b; c;0Þ in the dividend growth rate
process in Eq. (6b), Appendix A shows that the conditional expectation in Eq. (5) is finite only when b signð1� gÞ ¼ �1. This
condition is satisfied if either: (i) b ¼ �1 and go1 or (ii) b ¼ þ1 and g41. Thus, an operational theory of choice under
uncertainty can be worked out under these conditions.

One can obtain an operational theory of choice under uncertainty without having to impose the condition b signð1�
gÞ ¼ �1 by dampening the a-stable distributions, as in the Dampened Power Law process of Wu (2006) and Bidarkota and
Dupoyet (2007), or by truncating them. However, in that case, one loses the convenience of solving the asset pricing model
in a simple way as will become evident in the next subsection. Moreover, in our view, imposing b signð1� gÞ ¼ �1 for the
purpose of demonstrating that filtering in leptokurtic non-Gaussian settings would generate volatility persistence is not
necessarily severe.

In the remainder of the paper, we assume that b ¼ �1 and go1. This choice for b is consistent with negative skewness
in dividends growth data and with evidence on go1 in Arrow (1971), Hansen and Singleton (1982), and Epstein and Zin
(1991).2 Carr and Wu (2003) refer to the b ¼ �1 case as the finite moment log-stable process.
3.2. Solution for the P/D ratios

Under the assumptions b ¼ �1 and go1, one can derive a tractable expression for the price–dividend ratio vt in Eq. (5).
Appendix B shows that vt can be reduced to

vt ¼
X1
i¼1

yi
½Et expfbiðmt � m̄Þg� exp im̄ð1� gÞ þ ið1� gÞ2 s

2

2
þ �

1� g
1� r

� �a
ca sec

pa
2

� �� 	Xi

j¼1

ð1� rjÞ
a

8<
:

9=
;

2
4

3
5, (7)

where bi � ð1� gÞðr=1� rÞð1� riÞ40. It is not possible to evaluate the conditional expectation term in the above equation
analytically under the assumed process for mt in Eq. (6b).
3.3. Convergence of the P/D ratios

The following theorem provides conditions for the price–dividend ratio to be finite.

Theorem 1. The series in Eq. (7) converges if and only if

r � y exp ð1� gÞm̄þ ð1� gÞ2 s
2

2
þ �

1� g
1� r

� �a
ca sec

pa
2

� �� 	
 �� 	
o1. (8)

Proof. Proof follows along the lines of the arguments in Appendix D of Bidarkota and McCulloch (2003).

Finiteness of the price–dividend ratio ensures that the expected discounted utility is finite in this model (see Burnside
1998). The next theorem derives an expression for the mean of the price–dividend ratio and provides conditions under
which this mean is finite.

Theorem 2. The mean of the price dividend ratio is given by

EðvtÞ ¼
X1
i¼1

yi exp im̄ð1� gÞ þ ið1� gÞ2 s
2

2
þ � bai

ca

1� ra

� 	
sec

pa
2

� �
 �2
4

þ �
1� g
1� r

� �a
ca sec

pa
2

� �� 	Xi

j¼1

ð1� rjÞ
a

8<
:

9=
;
3
5. (9)

It is finite if ro1, where r is the constant defined in Theorem 1.

Proof. Proof follows along the lines of the arguments in Appendix E of Bidarkota and McCulloch (2003).
2 Although the asset pricing theory with CRRA utility and stable distributions would go through with b ¼ þ1 and g41, we strongly suspect that this

would lead to mean implied equity returns, discussed in Section 5 below, being infinite. It is easy to prove this analytically in the complete information

case, with the autoregressive coefficient r in Eq. (6b) set to zero. However, it is not possible to demonstrate this analytically with the more general process

for dividend growth rates that we have in Eqs. (6) in the paper. This is one other reason why we do not entertain this alternative possibility in the paper.
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3.4. Solution under Gaussian distribution for Zt

In the benchmark case when Zt�iid Nð0;s2
ZÞ, we can obtain all the results derived in the previous subsections simply by

setting a ¼ 2. In this case, the skewness parameter of the stable distributions b loses its significance. We no longer need the
restriction b signð1� gÞ ¼ �1 in order to ensure finiteness of the conditional expectations term in Eq. (5), and hence of the
price–dividend ratio itself and its mean value in Eqs. (7) and (9), respectively.

As discussed in Section 2.4, in the Gaussian case, the conditional density of mt is Gaussian, and its conditional mean and
variance are given by the Kalman recursions. In this case, the conditional expectations term Et expfbiðmt � m̄Þg appearing in
the formula for the price–dividend ratio given in Eq. (7) can be evaluated using the formula for the moment generating
function of Gaussian random variables.

3.5. Solution under complete information

In the complete information benchmark case, recall from Section 2.5 that s2 ¼ 0 and mt ¼ xt , which is observed at time
t. All the analysis of Section 3 goes through exactly as in the incomplete information case. The price–dividend ratio and its
related properties in the benchmark complete information model with stable distribution for Zt are derived in Bidarkota
and McCulloch (2003) and with Gaussian distribution for Zt in Burnside (1998).

4. Empirical estimation of the model

In this section we report the data used to calibrate the theoretical model of Section 2, discuss maximum likelihood
estimation of the dividend growth rates process given in Eqs. (6), and report estimates of the parameters obtained.

4.1. Data issues

We calibrate the asset pricing model to quarterly real per capita US consumption growth rates on non-durables and
services from 1952:1 to 2004:2. Nominal seasonally adjusted per capita consumption data obtained from NIPA tables are
deflated using the CPI index. Summary statistics indicate an annualized mean growth rate of 2.02% and a standard
deviation of 1.34%. Skewness is estimated to be �0.40 and statistically different from 0 at the 1% level, indicating significant
negative skewness. This provides justification for our choice of a negative value for b in Section 3.1. Kurtosis is estimated to
be 4.29 and statistically different from 3 at the 1% level. This provides preliminary justification for our use of fat tailed
distribution in the specification of Eq. (6b). The Jarque–Bera test easily rejects normality at better than the 1% level. The
first order autocorrelation coefficient is 0.18 and statistically different from 0 at the 1% level. This provides preliminary
empirical justification for our restriction rX0 in the specification of Eq. (6b).

In order to assess the suitability of an a-stable process for consumption growth rates, we estimated the tail index of
their density (Kearns and Pagan, 1997) using the Hill estimator (1975). Estimation results with monthly consumption data
(not reported) indicate that the density tail index does not increase monotonically as the data is time aggregated. This is
contrary to what one would expect under Gaussian densities. On the other hand, the estimates are not stable with time
aggregation either, contrary to what is to be expected for a-stable densities (Wu, 2006). Also, sample estimates of skewness
exhibit great instability with time aggregation, supporting the a-stable hypothesis. On the other hand, sample estimates of
kurtosis decline with time aggregation, suggesting non-a-stable behavior. Overall, preliminary evidence in favor of the a-
stable hypothesis appears to be mixed.

4.2. Maximum likelihood estimation

The dividend growth rates process in Eqs. (6) constitutes a linear non-Gaussian state space model when Zt has the stable
distribution. Eq. (6a) is the observation equation and Eq. (6b) is the state transition equation. The non-Gaussian nature of
the model renders the Kalman filter suboptimal. Recursive formulae for obtaining the conditional densities of the state
variable mt , as well as the likelihood function, are available from an algorithm by Sorenson and Alspach (1971).

Let Xt denote the history of dividend growth rates observed at time t, i.e. Xt � fx1; . . . ; xtg. The recursive formulae for
obtaining one-step ahead predictive and filtering densities, due to Sorenson and Alspach (1971), are as follows:

pðmt jXt�1Þ ¼

Z 1
�1

pðmtjmt�1Þpðmt�1jXt�1Þdmt�1, (10a)

pðmt jXtÞ ¼ pðxtjmtÞpðmtjXt�1Þ=pðxtjXt�1Þ, (10b)

pðxtjXt�1Þ ¼

Z 1
�1

pðxtjmtÞpðmtjXt�1Þdmt . (10c)
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Finally, the log-likelihood function is given by

log pðx1; . . . ; xT Þ ¼
XT

t¼1

log pðxtjXt�1Þ: (11)

These formulae have been applied to non-Gaussian data and extended to include a smoother formula by Kitagawa (1987).
In the Gaussian case, these integrals can be evaluated analytically and they collapse to the Kalman recursions. In most

other circumstances, the integrals cannot be evaluated in closed form and one has to resort to numerical integration based
either on quadrature techniques (Kitagawa, 1987) or Monte Carlo methods (Durbin and Koopman, 2000). In this paper we
evaluate the integrals using quadrature methods. Details on the numerical method employed and its accuracy are omitted
here for the sake of brevity but are available in a related context in Bidarkota and McCulloch (1998, 2004) and Bidarkota
(2001, 2003). Kitagawa (1987) also provides extensive details on accuracy of quadrature techniques for estimation in this
context.

The probability density for stable distributions is obtained by Fourier inversion of their characteristic function available
as an exact analytical formula (Eqs. (A.2) and (A.3) of Bidarkota and McCulloch, 2003) using the Fast Fourier Transform
(FFT) methods discussed in Mittnik et al. (1999).
4.3. Parameter estimates

Maximum likelihood parameter estimates of the consumption growth rate process in Eqs. (6) are reported in Table 1
(Panel A). Three restricted versions of this most general model are also reported in Panels B to D.

Parameter estimates from Panel A indicate a mean consumption growth rate of 0.49% per quarter, or 1.96% per annum.
The AR parameter r is estimated to be 0.69, somewhat lower than the value of 0.89 reported in Veronesi (2004) with an AR
Table 1
Parameter estimates.

Panel A: Incomplete information, stable model

m̄ r a c s Log likelihood

0.0049 0.6889 1.8564 0.0014 0.0058 755.6100

0.0007 0.1724 0.2500 0.0007 0.0005

Panel B: Incomplete information, Gaussian model

m̄ r a sZ s Log likelihood

0.0050 0.7396 2.0000 0.0022 0.0058 755.4003

0.0007 0.1260 (restricted) 0.0008 0.0004

Panel C: Complete information, stable model

m̄ r a c Log likelihood

0.0051 0.1343 1.9140 0.0043 755.5771

0.0003 0.0222 0.0545 0.0002

Panel D: Complete information, Gaussian model

m̄ r a sZ Log likelihood

0.0050 0.1758 2.0000 0.0066 753.5202

0.0006 0.0674 (restricted) 0.0003

This table reports the maximum likelihood estimates of the model for dividend growth rates, xt ¼ mt+et where �t�iid Nð0;s2Þ and where the unobserved

persistent component mt follows:

mt � m̄ ¼ rðmt�1 � m̄Þ þ Zt with 0pro1 and Zt�iid Sða;b; c;0Þ.

The model is calibrated to quarterly real per capita US consumption growth rates on non-durables and services from the first quarter of 1952 through the

second quarter of 2004. Nominal seasonally adjusted per capita consumption data obtained from NIPA tables are deflated using the CPI index.

Panel A reports estimates for the most general model. Panel B reports estimates for the special case where Zt�iid Nð0;s2
ZÞ. Panels C and D report estimates

for the complete information counterparts of panels A and B, by setting et to zero.

Conditional densities of the state variable mt are obtained by applying the algorithm by Sorenson and Alspach (1971) in panel A and a Kalman filter in

panel B. The probability density for stable distributions is obtained by Fourier inversion of their characteristic function available as an exact analytical

formula using the Fast Fourier Transform (FFT) methods discussed in Mittnik et al. (1999). Standard errors are reported below each parameter estimate.
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Fig. 1. Unconditional distribution of mt. The figure uses the maximum likelihood parameter estimates reported in Panels A and B of Table 1 to plot the

unconditional distribution of mt, the persistent component of dividend growth rates defined by xt ¼ mt+et and mt � m̄ ¼ rðmt�1 � m̄Þ þ Zt , for both the stable

model where Zt�iid Sða;b; c;0Þ and the Gaussian model where Zt�iid Nð0;s2
ZÞ, with �t�iid Nð0;s2Þ and 0pro1.
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model with asymmetric jumps. Nonetheless, it is statistically significantly different from 0 by the usual t-test at better than
the 1% significance level.

Parameter estimates for the incomplete information Gaussian model in Panel B are very similar, and the maximized log-
likelihood value only drops slightly in this case. The likelihood ratio (LR) statistic for normality (test for a ¼ 2) is 0.42 and is
not rejected.3,4

Fig. 1 plots the unconditional distribution of mt for both the stable and Gaussian models implied by Eq. (6b), using the
maximum likelihood parameter estimates reported above. With the stable index a estimated to be 1.86, so close to the
value of 2 for a Gaussian distribution, the differences in the unconditional densities for the stable and Gaussian models are
modest. The assumption b ¼ �1 does not generate much skewness in the unconditional distribution for this high value of
a, as evident in the figure, and thus does not seem overly restrictive.

Fig. 2 plots the conditional probability densities pðmtjx1; x2; . . . ; xtÞ. Close examination of the plots indicate that the
conditional densities in the stable case display varied behavior, being at times even multimodal. Bidarkota and McCulloch
(1998) and Bidarkota (2003) provide detailed examination of such densities in non-Gaussian state space models with
stable errors fit to inflation data. On the other hand, as noted earlier, the conditional densities in the Gaussian case are
Gaussian.

Fig. 3 plots the mean of these filter densities Eðmtjx1; x2; . . . ; xtÞ, along with the observed consumption growth rates xt ,
and Fig. 4 plots their standard deviations. It is clear that the variance of the filter density in the Gaussian case quickly
reaches a constant value. On the other hand, the variance of the filter density in the stable case never stabilizes to a
constant value but is forever fluctuating. David (1997) refers to this as ‘fluctuating confidence’ in the investors’ estimate of
the unobservable component of the dividend growth rate and Veronesi (2004) refers to this as ‘Bayesian uncertainty’.5 This
fluctuating confidence largely drives the time varying characteristics of returns implied by our asset pricing model.

The complete information stable model parameter estimates are reported in Panel C of Table 1. The AR coefficient r is
now only 0.13, as against 0.69 for the incomplete information model, but still statistically significantly different from 0 by
3 The distribution of the LR test statistic in this instance is not standard w2
1 because the null hypothesis lies on the admissible boundary of a. The 0.05

level critical value for such a test, available through Monte Carlo simulations from McCulloch (1997, Table 4, panel b), equals 1.12.
4 One could alternatively consider a dividends growth rate process with et distributed as S(a,b,c,0) and Zt�iid Nð0;s2

ZÞ in Eqs. (6). We estimated such a

model by ML and found that parameter estimates are very similar across the two models but the maximized log-likelihood is actually higher (758.0634,

LR test would reject the Gaussian model easily). Given the similarities in parameter estimates, our asset pricing implications are likely to be materially

unaffected. We do not entertain this alternative specification, despite its higher log-likelihood, for two reasons. The asset pricing solution with such a

specification also requires b ¼ �1 and go1. We are reluctant to specify a S(a,b,c,0) distribution with b ¼ �1 for the measurement equation error in the

state space model if one views et as measurement error in the consumption growth rate. A second reason is that we follow Veronesi (2004) as well as the

literature on Markov switching processes (e.g., Brandt et al., 2004) in keeping the measurement equation shock Gaussian and the state dynamics non-

Gaussian.
5 Filtering in general non-Gaussian settings, not just those with a-stable distributions, leads to fluctuating confidence. To verify this, we estimated the

model in Eqs. (6) under two alternative fat-tailed distributions for Zt, namely the Extreme Value and the Pearson Type IV distributions. Corresponding

plots of the filter densities in these two cases reveal similar behavior of the filter standard deviations as in Fig. 4, indicating that these alternative fat-tailed

distributions also generate fluctuating confidence.
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Fig. 2. Filtered probability densities p(mt|x1,x2,y,xt). The figure plots the filtered conditional probability densities p(mt|x1,x2,y,xt). Panel A plots the

densities for the stable case with the densities estimated by using the algorithm by Sorenson and Alspach (1971) and the maximum likelihood parameter

estimates of Panel A in Table 1. Panel B plots the densities for the Gaussian case with the densities estimated by using a Kalman filter and the maximum

likelihood parameter estimates of Panel B in Table 1.
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the usual t-test at better than the 1% significance level. The LR test statistic for complete information versus incomplete
information model turns out to be just 0.07, and is not rejected using critical values from the w2

1 at usual significance levels.
The complete information Gaussian model parameter estimates are reported in Panel D of Table 1. These estimates

change only slightly from those in Panel C. However, the maximized log-likelihood shows a large drop. The LR test statistic
for normality (test for a ¼ 2) is calculated to be 4.11 and rejected. Thus, with complete information models, there is
significant statistical support for stable shocks. The LR test statistic for complete information versus incomplete
information model in the Gaussian case turns out to be 3.76, with a w2

1 p-value of 0.05. Thus, with Gaussian shocks, there is
significant statistical support for the incomplete information model.

5. Analysis of model implications

In this section we discuss the implications of the theoretical model of Section 2 and report on the results obtained in
analyses of unconditional and conditional properties of model implied rates of returns from a simulation setup.

5.1. Model-implied rates of return

Equilibrium gross equity returns Re
t on assets held from periods t to t+1 are given by

Re
t ¼

Ptþ1 þ Dtþ1

Pt

� �
. (12)
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Fig. 3. Filtered mean E(mt|x1,x2,y,xt). The figure plots the mean of the filtered densities E(mt|x1,x2,y,xt), along with the observed consumption growth

rates xt. Panel A plots the mean of the filtered densities for the stable case with the densities (plotted in Fig. 2A) estimated by using the algorithm by

Sorenson and Alspach (1971) and the maximum likelihood parameter estimates of Panel A in Table 1. Panel B plots the mean of the filtered densities for

the Gaussian case with the densities (plotted in Fig. 2B) estimated by using a Kalman filter and the maximum likelihood parameter estimates of Panel B in

Table 1.
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Using vt ¼ Pt=Dt and xt ¼ lnðDt=Dt�1Þ, this reduces to

Re
t ¼

1þ vtþ1

vt

� �
exp½xtþ1�. (13)

It is not possible to analytically evaluate the population mean of the implied equity returns, i.e. EðRe
t Þ, in our model given

the expression for vt in Eq. (7).
The price of a risk free asset Pf

t in our endowment economy guarantees one unit of the consumption good on maturity.
Our assumption b ¼ �1 implies that Pf

t is infinite and hence the gross risk free returns are zero. Formal proof follows along
the lines of the argument in Appendix F of Bidarkota and McCulloch (2003). Presumably, in the model for the dividends
process, the uncertainty is so overwhelmingly unfavorable that as long as investors are risk averse, they are willing to pay
an infinite amount to guarantee themselves strictly positive consumption next period. Infinite prices for risk free assets
simply mean that these assets cannot exist in the economy under the assumed stochastic process for dividends.

One can get around the difficulty of infinite risk-free asset prices by truncating or dampening the a-stable distributions
in Eq. (6b), as in the dampened power law process in Wu (2006). Although dampening/truncation may be appealing, we
lose the convenience of solving the asset pricing model in a simple way. In any case, our main objective in this paper is to
demonstrate that filtering in fat-tailed non-Gaussian continuous-valued stochastic setting can generate volatility
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persistence in implied returns. Therefore, in what follows, we restrict ourselves to an analysis of implied returns on risky
assets.

5.2. Unconditional moments

Table 2, Panel A reports unconditional moments of quarterly value-weighted real returns on all NYSE, AMEX, and
NASDAQ stocks obtained from CRSP dataset for the period 1952:1–2004:2. We subtract CPI inflation from nominal returns
to obtain real returns, expressed in percent per annum.

Panel A indicates that quarterly real returns have a mean of 8.07% per annum and a standard deviation of 16.77. Panels B
to E report the unconditional moments for returns implied by our theoretical model of Section 2, obtained by simulating it
at an annual frequency. Moments are reported for various values of the discount factor y and the risk-aversion coefficient g.

The maximum implied mean returns from our incomplete information stable model are only 3.90% and the maximum
standard deviation is only 1.75%. Overall, it is clear from looking at all the panels that none of the models do a good job of
replicating the unconditional moments of equity returns. This is simply a manifestation of the equity premium puzzle of
Mehra and Prescott (1985).

It is clear from an examination of all the panels that adding incomplete information to the asset pricing model reduces
the mean and raises the standard deviation of implied equity returns slightly. Generalizing from Gaussian to stable models
lowers both the mean and the standard deviation of implied equity returns in the incomplete information case but raises
these moments in the complete information case.

The benchmark complete information asset pricing model, with stable and Gaussian dividend growth rate processes,
was studied in Bidarkota and McCulloch (2003). Panels D and E of Table 2 here replicate results reported in that study
closely, although the model in that study was calibrated to a random walk process with drift, fit to annual US consumption
data for the period 1890–1987. Our results in Table 2 thus indicate that adding incomplete information to the non-Gaussian
framework of that study does not generate high enough mean equity returns to conform closely enough to the numbers in
the data.

5.3. Time-varying volatility

We now proceed to an evaluation of the conditional moments of implied returns in a simulation setup for y ¼ 0.98 and
g ¼ 0.9, since for these preference parameter values the unconditional mean stock returns implied by the incomplete
information stable model are closest to their sample counterpart.

Let rt � Re
t � 1 denote the net rates of return on risky assets. We set up the following model for analyzing net returns:

rt ¼ a0 þ a5rt�1 þ �t ; �t�stzt ; zt� iid Nð0;1Þ. (14a)

A simple AR(1) process for returns allows for any possible predictability, and has been used by Malik et al. (2005) and
Tsiakas (2006).
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Table 2
Unconditional moments of returns.

Panel A: Data (1952:1 to 2004:2)

E(R) s(R)

Real returns 8.07 16.77

Panel B: Incomplete information, stable model

y g E(R) s(R) E(Vt)

0.98 0.60 3.2901 1.7459 80.599

0.98 0.75 3.5943 1.6466 64.898

0.98 0.90 3.8986 1.555 54.321

0.99 0.60 2.2753 1.7388 406.67

0.99 0.75 2.5511 1.6363 192.95

0.99 0.90 2.8494 1.5417 123.08

Panel C: Incomplete information, Gaussian model

y g E(R) s(R) E(Vt)

0.98 0.60 3.31 2.06 81.26

0.98 0.75 3.62 1.94 65.17

0.98 0.90 3.93 1.83 54.40

0.99 0.60 2.30 2.05 420.35

0.99 0.75 2.58 1.93 195.28

0.99 0.90 2.88 1.82 123.48

Panel D: Complete information, stable model

y g E(R) s(R) E(Vt)

0.98 0.60 3.34 1.62 82.89

0.98 0.75 3.65 1.60 65.83

0.98 0.90 3.97 1.57 54.58

0.99 0.60 2.33 1.61 456.90

0.99 0.75 2.61 1.58 201.12

0.99 0.90 2.92 1.56 124.43

Panel E: Complete information, Gaussian model

y g E(R) s(R) E(Vt)

0.98 0.60 3.31 1.48 82.07

0.98 0.75 3.63 1.45 65.51

0.98 0.90 3.94 1.42 54.50

0.99 0.60 2.30 1.47 438.09

0.99 0.75 2.58 1.44 198.24

0.99 0.90 2.89 1.41 123.97

Panel A reports unconditional moments of quarterly value-weighted real returns on all NYSE, AMEX, and NASDAQ stocks obtained from CRSP data set for

the period going from the first quarter of 1952 through the second quarter of 2004. CPI inflation is subtracted from nominal returns to obtain real returns,

expressed in percent per annum. Moments are reported for a range of values for the subjective discount factor y, and the risk-aversion coefficient g. Panels

B–E report the unconditional moments of simulated returns obtained from the asset pricing model by feeding simulated consumption growth rates data

using the estimated parameters from each panel of Table 1. The statistics reported in percentage per annum are the mean returns E(R), standard deviation

of returns s(R), and the mean price-dividend ratio E(Vt).
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Time-varying volatility of returns st is modeled alternatively as a GARCH(1,1) and an asymmetric GARCH(1,1) process
(AGARCH) as follows:

GARCHð1;1Þ : s2
t ¼ a1 þ a2s2

t�1 þ a3jrt�1 � a0 � a5rt�2j
2, (14b)

AGARCHð1;1Þ : s2
t ¼ a1 þ a2s2

t�1 þ a3jrt�1 � a0 � a5rt�2j
2 þ a4It�1jðrt�1 � a0 � a5rt�2Þ=st�1j

2, (14c)

where

It�1 ¼
1 if rt�1 � a0 � a5rt�2o0;

0 otherwise:

(
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Table 3
Time-varying volatility of returns.

Panel A: Date (1952:1–2004:2)

a1 a5 Log likelihood

Homoskedastic case 1119.6475 0.0626 �1030.2289

110.2488 0.0300

a1 a2 a3 a5 Log likelihood

GARCH(1,1) 313.5011 0.5651 0.1613 0.0954 �1026.9285

147.2470 0.1646 0.0825 0.0715

a1 a2 a3 a4 a5 Log likelihood

AGARCH(1,1) 430.9533 0.4169 0.0000 435.3126 0.1390 �1023.6925

172.0353 0.1683 0.1056 237.1131 0.0767

Panel B: Incomplete information, Stable model

a1 a5 Log likelihood

Homoskedastic case 2.2889 0.2321 �7309.8851

0.0510 0.0154

a1 a2 a3 a5 Log likelihood

GARCH(1,1) 1.4174 0.3057 0.0745 0.1843 �7278.9910

0.1248 0.1248 0.0239 0.0183

a1 a2 a3 a4 a5 Log likelihood

AGARCH(1,1) 1.3176 0.3486 0.0000 0.3295 0.1782 �7265.5310

1.8868 1.2550 0.6308 0.5123 0.0329

Panel C: Incomplete information, Gaussian model

a1 a5 Log likelihood

Homoskedastic case 3.7116 0.1838 �8273.7786

0.0832 0.0171

a1 a2 a3 a5 Log likelihood

GARCH(1,1) 2.9426 0.2073 0.0000 0.1839 �8274.0889

3.7463 0.1763 0.9198 0.0669

a1 a2 a3 a4 a5 Log likelihood

AGARCH(1,1) 3.6919 0.0000 0.0000 0.0412 0.1849 �8273.9457

3.3757 0.9853 0.9633 3.0558 0.0325

Panel D: Complete information, stable model

a1 a5 Log likelihood

Homoskedastic case 2.4370 0.1284 �7434.9947

0.0661 0.0161

a1 a2 a3 a5 Log likelihood

GARCH(1,1) 1.9300 0.2083 0.0000 0.1284 �7435.4662

P.V. Bidarkota et al. / Journal of Economic Dynamics & Control 33 (2009) 1314–1331 1325
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0.2726 0.1034 0.0024 0.0148

a1 a2 a3 a4 a5 Log likelihood

AGARCH(1,1) 2.4368 0.0004 0.0000 0.0000 0.1284 �7435.4662

1.1883 0.0011 0.0372 0.0436 0.0682

Panel E: Complete information, Gaussian model

a1 a5 Log likelihood

Homoskedastic case 1.9397 0.1963 �6979.7742

0.0451 0.0158

a1 a2 a3 a5 Log likelihood

GARCH(1,1) 1.8424 0.0503 0.0000 0.1964 �6980.0727

0.4957 0.5505 0.8168 0.0676

a1 a2 a3 a4 a5 Log likelihood

AGARCH(1,1) 1.9268 0.0000 0.0000 0.0265 0.1971 �6979.8422

2.0004 1.0000 0.9074 1.5912 0.0237

Panel A reports the estimates of a homoskedastic model, GARCH(1,1) model and AGARCH(1,1) model fitted to quarterly value-weighted real returns on all

NYSE, AMEX, and NASDAQ stocks obtained from CRSP data set for the period going from the first quarter of 1952 through the second quarter of 2004. The

models assume that returns are conditionally normally distributed. Thus

rt ¼ a0 þ a5rt�1 þ �t ; �t�stzt ; zt�iid Nð0;1Þ

with volatility given by, respectively:

Homoskedastic : s2
t ¼ a1

GARCHð1;1Þ : s2
t ¼ a1 þ a2s2

t�1 þ a3jrt�1 � a0 � a5rt�2j
2

AGARCHð1;1Þ : s2
t ¼ a1 þ a2s2

t�1 þ a3jrt�1 � a0 � a5rt�2j
2 þ a4It�1jðrt�1 � a0 � a5rt�2Þ=st�1j

2

where

It�1 ¼
1 if rt�1 � a0 � a5rt�2o0

0 otherwise



.

The restrictions a140, a2X0, a3X0, a4X0, and |a5|o1 are enforced in all models. Panels B–E report estimates of the above models with simulated returns

obtained from the asset pricing model by feeding simulated consumption growth rates data using the estimated parameters from each panel of Table 1. A

subjective discount factor y of 0.98 and a risk-aversion coefficient g of 0.9 are used to obtain simulated returns since the unconditional mean stock returns

implied by the incomplete information stable model are closest to their sample counterpart for these preference parameter values. Standard errors are

reported below each volatility parameter estimate.

Table 3 (continued)
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We restrict a140, a2X0, a3X0, a4X0, and |a5|o1. The AGARCH(1,1) process (asymmetric GARCH) allows for leverage
effects, captured by the threshold term involving the dummy variable It�1. Leverage effects indicate that negative shocks to
returns have greater effect on future volatility than do positive shocks of equal magnitude.

Table 3, Panel A reports estimates obtained by fitting the above volatility processes to quarterly value-weighted real
returns on all NYSE, AMEX, and NASDAQ stocks obtained from CRSP dataset for the period 1952:1–2004:2. We subtract CPI
inflation from nominal returns to obtain real returns, expressed in percent per annum for estimation. Panel A indicates that,
with estimates for the AGARCH process, quarterly real returns have a volatility persistence parameter a2 of 0.42. It is well
known in the literature that quarterly returns exhibit lower volatility persistence compared to higher frequency returns,
such as monthly or weekly returns. The ARCH parameter a3 is estimated to be 0.00. The leverage parameter a4 is estimated
to be 435.31.

An LR test for homoskedasticity (test for a2 ¼ a3 ¼ a4 ¼ 0) rejects easily using the w2
3 distribution (p-value less than

0.01). LR test for GARCH versus the AGARCH model (test for a4 ¼ 0) also rejects easily using the w2
1 distribution (p-value less
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than 0.05), indicating strong statistical significance of the leverage effect. Strictly speaking, the LR test does not have the
standard w2 distribution for these tests because the null hypotheses lie on the boundary of admissible values for a2, a3, and
a4 (as also in footnote 2). Andrews (2001) provides recent theoretical advances in this regard. Monte Carlo critical values for
these tests generated using 1000 replications indicated even stronger rejection of the two hypotheses.

Panels B to E of Table 3 report maximum likelihood estimates obtained by fitting the above volatility processes to
returns implied by the four versions of our models. Estimates of the AGARCH process fit to implied returns from the
incomplete information stable model indicate a volatility persistence coefficient of 0.35, an ARCH coefficient of 0.00, and a
leverage parameter of 0.33. The low value for the leverage parameter as compared to that for the data is simply a reflection
of the fact that our implied returns do not match the unconditional variance of returns in the data very well, as evident
from the discussion of unconditional moments in Section 5.3. The overall volatility persistence (a2+a3) is 0.35 in implied
returns as opposed to 0.42 in the data. LR test for homoskedasticity is strongly rejected in favor of time-varying volatility,
and leverage effects are also strongly statistically significant. Our choice of negative skewness in consumption growth rates
in Section 3.1 leads to a greater probability of large negative shocks than large positive shocks. This feature of our
framework is directly responsible for generating the apparent leverage effects.

Results reported in Panel C indicate that the incomplete information Gaussian model does not generate statistically
significant volatility persistence, with the point estimate of the volatility persistence from the AGARCH model at 0.00. An
examination of results reported in the remaining panels indicates that implied returns from the complete information
models, both stable and Gaussian, completely fail to generate statistically significant volatility persistence and/or the
leverage effects.

Implied returns from our incomplete (and complete) information stable model are unlikely to be Gaussian. Therefore,
the models for net returns in Eqs. (14) are likely to be misspecified, at least in the stable cases. To account for this, we also
estimated versions of the GARCH(1,1) and AGARCH(1,1) models, with the scaled innovation zt in Eq. (14a) distributed as
iid Sða0;b0;1;0Þ. The volatility process in Eqs. (14b) and (14c) is formulated in this case in terms of time-varying scale
parameter ct using a-powers instead of squares, as in Bidarkota and McCulloch (2004). Maximum likelihood estimation of
this model, and a subsequent LR test for a ¼ 2 easily rejects as suspected, indicating statistically significant non-normality
of implied returns. An LR test indicates statistically significant volatility persistence with a larger volatility persistence
parameter. However, leverage effects are no longer statistically significant.

5.4. Predictability

We go on to analyze the ability of our incomplete information stable model to reproduce other stylized facts about
observed returns. Sample autocorrelation coefficients for quarterly value-weighted real returns on the NYSE, AMEX, and
NASDAQ stocks analyzed in the previous subsection are 0.06, �0.04, and �0.02 at the first three lags. The sample
autocorrelation coefficients for returns implied by our incomplete information stable model are 0.23, 0.06, and 0.05 at the
first three lags. Thus, our model has the potential to generate predictability in implied returns.

Panel A of Table 3 shows that the AR(1) coefficient a5 is estimated to be 0.14 with the AGARCH model and is statistically
significant. Panel B reports a statistically significant estimate of 0.18 for simulated returns with the incomplete information
stable model. All other panels show a very similar point estimate of a5. In every case, this coefficient is strongly significant.
Thus, our model can reproduce observed predictability in implied returns.

We go on to examine the mean reversion behavior of returns if any (as in Fama and French, 1988a), their predictability
from dividend yields (as in Fama and French, 1988b), and autocorrelations of the price–dividend ratios. For the sake of
brevity we only report a brief summary of this analysis.

Regressions designed to test for mean reversion, as first done by Fama and French (1988a), yielded a U-shaped pattern
for implied returns from our incomplete information stable model. This is consistent with the evidence reported in Fama
and French (1988a) for US stock returns data. Plots of estimates of the variance ratio statistics, both for implied returns and
those on quarterly value-weighted real returns on the NYSE, AMEX, and NASDAQ stocks, are similar. However, there is no
evidence to suggest that our implied returns, especially at long horizons, are predictable from dividend yields, as has been
found by Fama and French (1988b). Sample autocorrelations for our implied price–dividend ratios at the first five lags also
match very closely those reported for US stocks data by Kurz et al. (2006).

5.5. Implications of stable distributions

In this section, we gather briefly all the implications of using stable distributions to model the unobservable dividends
drift process in Eq. (6b). Because of the stability property of stable distributions (that sums of iid stable random variables
are themselves stable), we are able to solve the asset pricing model with fat tails in a fairly simple way, with the
price–dividend ratio given by the expression in Eq. (7). Any other fat-tailed distributional assumption would necessarily
entail a more complicated approximate numerical solution to the asset pricing model.

Although the LR test in Section 4.3 fails to reject the Gaussian incomplete information model, as footnote 3 makes clear,
such a model can be rejected statistically if one reverses the role of the stable and Gaussian distributions in Eqs. (6). For
reasons elaborated in that footnote, we choose to retain the specification in Eqs. (6). As Fig. 4 makes clear, the stable model
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delivers a time-varying filter variance, resulting in statistically significant time-varying volatility of implied returns, as in
Table 3. On the other hand, the Gaussian setup delivers a constant filter variance, and hence cannot generate statistically
significant time-varying volatility of implied returns. As Section 5.3 makes clear, the stable model results in implied returns
that are not normally distributed. This conforms to the abundant empirical evidence on non-normality of returns data, as
for instance in Bidarkota and McCulloch (2004).

6. Conclusions

We study the consumption based asset pricing model of Lucas (1978) in incomplete information setting with stable
shocks driving the exogenous stochastic dividends growth rate process. The unobservability of the persistent component of
dividends growth rates introduces a non-Gaussian filtering problem that agents solve using Bayesian updating schemes.
This leads to a recursive estimate of the persistent component of the dividend growth rate, whose conditional variance
always reacts to new data unlike the Kalman filter in the Gaussian setting. This time variation in the conditional variance of
the agents’ estimate of the persistent component leads to time variation in the volatility of implied returns.

We test this implication of our model using quarterly per capita real US consumption data. Our results indicate that the
implied equilibrium returns display statistically significant volatility persistence of a magnitude comparable to that in the
data. Our model also replicates leverage effect noted in the time-varying volatility of observed returns, although this result
is not robust to changes in the distributional assumptions about implied returns. Neither incomplete information in a
Gaussian setting, nor complete information in either Gaussian or stable settings, is able to generate these features in
implied returns.
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Appendix A. Evaluation of conditional expectations in the price–dividend ratio

In this appendix we derive conditions under which the conditional expectation terms that appear in Eq. (5) in the text
are finite. We need to derive conditions under which

Et

Yi

j¼1

mtþjo1,

where mtþj � y exp½ð1� gÞxtþj�.
Let o � 1� g. Therefore, mtþj ¼ y exp½oxtþj�.
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From dividend growth rate process in Eq. (6a),
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From dividend growth rate process in Eq. (6b):
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Define bi � oðr=ð1� rÞÞð1� riÞ. From the iid nature of �t and Zt , we can write:

Et

Yi

j¼1

mtþj ¼ yi exp½im̄o�Et exp½biðmt � m̄Þ�Et exp
o

1� r

� �
ð1� riÞZtþ1

� 	
exp

o
1� r

� �
ð1� ri�1ÞZtþ2

� 	�

. . . exp
o

1� r

� �
ð1� rÞZtþi

� 		
Et½expðo�tþ1Þ expðo�tþ2Þ � � � expðo�tþiÞ�. (A.4)

Since �t�iid Nð0;s2Þ in Eq. (6a),

Et½expðo�tþ1Þ expðo�tþ2Þ � � � expðo�tþiÞ� ¼ Etfexpðo�tþ1ÞgEtfexpðo�tþ2Þg � � � Etfexpðo�tþiÞg. (A.5)

From the moment generating function of normal random variables, we have

Etfexpðo�tþ1Þg ¼ Etfexp o�tþ2ð Þg ¼ � � � ¼ Etfexpðo�tþiÞg ¼ expf12o
2s2g. (A.6)

Since Zt�iid Sða;b; c;0Þ in Eq. (6b),

Et exp
o

1� r

� �
ð1� riÞZtþ1

� 	
exp

o
1� r

� �
ð1� ri�1ÞZtþ2

� 	
. . . exp

o
1� r

� �
ð1� rÞZtþi

� 	
 �

¼ Et exp
o

1� r

� �
ð1� riÞZtþ1

� 	
 �
Et exp

o
1� r

� �
ð1� ri�1ÞZtþ2

� 	
 �
. . .Et exp

o
1� r

� �
ð1� rÞZtþi

� 	
 �
. (A.7)

Using Eq. (A.4) from Bidarkota and McCulloch (2003):

o
1� r

ð1� riÞZtþ1�S a; sign o 1� ri

1� r

� �
 �
b; o 1� ri

1� r

� �����
����c;0

� �
.

Since Eq. (6b) also specifies that jrjo1, we have ð1� riÞ=ð1� rÞ40. Therefore,

sign o 1� ri

1� r

� �
 �
¼ signðoÞ.

Hence,

o
1� r ð1� r

iÞZtþ1�S a; signðoÞb; o 1� ri

1� r

� �����
����c;0

� �
(A.8)

and so forth for all the other Z0s in Eq. (A.7).
Now,

Et

Yi

j¼1

mtþjo1

if the right hand-side of Eq. (A.4) is finite. This requires that each of the three conditional expectation terms on the right
hand-side of Eq. (A.4) be finite. From Eq. (A.6), the third conditional expectation term on the right hand-side of Eq. (A.4) is
finite.

The second conditional expectation term on the right hand-side of Eq. (A.4) is finite if each of the conditional
expectation terms on the right hand-side of Eq. (A.7) is finite. Using Eq. (A.8) above and (A.8) of Bidarkota and McCulloch
(2003), this happens when b signðoÞ ¼ �1. Or, substituting for o, this happens when b signð1� gÞ ¼ �1.

From Eq. (6b), we can solve for mt � m0 as

mt � m̄ ¼
X1
i¼0

riZt�i. (A.9)

Eq. (6b) also specifies that Zt�iid Sða;b; c;0Þ. Then, using Eq. (A.4) from Bidarkota and McCulloch (2003) and the fact that
0pr, we have riZt�i�iid Sða;b;ric;0Þ.

Using Eqs. (A.5), (A.6), and (A.7) from Bidarkota and McCulloch (2003), we get

X1
i¼1

riZt�i�S a;b;
X1
i¼0

ðriÞ
a

�����
�����
1=a

c;0

0
@

1
A.

With jrjo1 already assumed in Eq. (6b),

X1
i¼0

ðriÞ
a
¼

1

1� ra .



ARTICLE IN PRESS

P.V. Bidarkota et al. / Journal of Economic Dynamics & Control 33 (2009) 1314–13311330
Therefore, from Eq. (A.9),

mt � m̄ ¼
X1
i¼0

riZt�i�S a;b; c

½1� ra�1=a
;0

 !
. (A.10)

From the definition of bi � oðr=1� rÞð1� riÞ, sign(bi) ¼ sign(o). Therefore,

biðmt � m̄Þ�S a; signðoÞb; jbij

ð1� raÞ1=a
c;0

 !
. (A.11)

The unconditional expectation E½expfbiðmt � m̄Þg� is finite if b sign(o) ¼ b sign(1�g) ¼ �1 from Eq. (A.8) of Bidarkota and
McCulloch (2003). It follows from the law of iterated expectations that the first conditional expectation term on the right
hand-side of Eq. (A.4) is finite if b sign(1�g) ¼ �1.

Therefore,

Et

Yi

j¼1

mtþjo1,

when b sign(1�g) ¼ �1.
Appendix B. Derivation of the tractable expression for the price–dividend ratio

In this appendix we derive the expression for the price dividend ratio vt given in Eq. (7). Eq. (5) gives

vt ¼
X1
i¼1

Et

Yi

j¼1

mtþj

0
@

1
A. (B.1)

From Appendix A, we know that

Et

Yi

j¼1

mtþjo1,

when b sign(1�g) ¼ �1.
Under b ¼ �1 and go1 and using jrjo1, we get from Eqs. (A.9), (A.10) and (A.8) of Bidarkota and McCulloch (2003):

Et exp
o

1� r

� �
ð1� riÞZtþ1

� 	
 �
¼ exp � o 1� ri

1� r

� �
 �a

ca sec
pa
2

� �" #
, (B.2)

Et exp
o

1� r

� �
ð1� ri�1ÞZtþ2

� 	
 �
¼ exp � o 1� ri�1

1� r

� �
 �a

ca sec
pa
2

� �" #
(B.3)

and so forth for all the other Z’s in Eq. (A.8):

Et exp
o

1� r

� �
ð1� rÞZtþi

� 	
 �
¼ exp � o 1� r

1� r

� �
 �a
ca sec

pa
2

� �� 	
. (B.4)

Substituting (B.2), (B.3), and (B.4) into (A.8), we get

Et exp
o

1� r

� �
ð1� riÞZtþ1

� 	
exp

o
1� r

� �
ð1� ri�1ÞZtþ2

� 	
. . . exp

o
1� r

� �
ð1� rÞZtþi

� 	
 �

¼ exp �
o

1� r


 �a
ca sec

pa
2

� �� 	Xi

j¼1

ð1� rjÞ
a

8<
:

9=
;. (B.5)

Substituting (B.5) and (A.7) into (A.5) and collecting terms results in:

Et

Yi

j¼1

mtþj ¼ yi
½Et expfbiðmt � m̄Þg� exp im̄ð1� gÞ þ ið1� gÞ2 s

2

2

2
4

þ �
1� g
1� r


 �a
ca sec

pa
2

� �� 	Xi

j¼1

ð1� rjÞ
a

8<
:

9=
;
3
5 (B.6)

recognizing from Appendix A that o ¼ 1�g.
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Finally, substituting (B.6) into (B.1) gives

vt ¼
X1
i¼1

yi
½Et expfbiðmt � m̄Þg� exp im̄ð1� gÞ þ ið1� gÞ2 s

2

2

2
4

þ �
1� g
1� r


 �a
ca sec

pa
2

� �� 	Xi

j¼1

ð1� rjÞ
a

8<
:

9=
;
3
5, (B.7)

where, from Appendix A, we have bi � ð1� gÞðr=1� rÞð1� riÞ.
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