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An important component of theoretical CBOE 
 Volatility Index (VIX) futures prices is a term cor-
recting for the negative convexity of the square root 
function by subtracting from the forward-starting vari-
ance swap rate an estimate of the future volatility of 
VIX futures prices. In the same fashion that an index 
option’s traditional implied volatility can be viewed as 
an aggregate market consensus of future realized vola-
tility, this convexity value can be viewed as an aggre-
gate market consensus of future volatility of volatility. 
This article examines the predictive properties and 
features of this convexity adjustment needed to value 
VIX futures prices by extracting it from the relation-
ship between observed VIX futures prices and the cor-
responding spot option market prices used to compute 
the forward-starting variance swap rate. The authors 
find that implied convexity levels can indeed be used 
to forecast the future volatility of VIX futures prices, 
even though implied convexity consistently underes-
timates future realized VIX futures variance. They 
also show that implied convexity can at times violate 
strict theoretical conditions by being negative, although 
we are able to rule out arbitrage opportunities. Finally, 
they examine the properties of this implied convexity 
adjustment, both as a time series and with respect to 
various market volatility factors with which they find 
positive and statistically significant relations.

CBOE Volatility Index (VIX) 
futures and options pricing are 
active areas of research, both 
because volatility products are 

considered a new asset class and because the 
financial community has yet to accept a VIX 
futures or VIX options pricing model as the 
definitive one. The difficulties in pricing VIX 
products arise from the need to accurately 
estimate a number of complex factors under 
different market scenarios, the importance of 
the stability of these factors, and the size of the 
mispricing of current existing models. Fur-
thermore, for VIX options, determining the 
appropriate value of the volatility of volatility 
(the implied volatility of VIX options) is chal-
lenging. Consequently, the limited market-
based empirical evidence does not support 
the long-term pricing stability of any of the 
existing models. As Poon and Granger [2003] 
pointed out, “much remains to be done to 
understand the process and characteristics of 
volatility.”

In the pricing of VIX futures, the issue 
of (negative) convexity arises through Jensen’s 
inequality and the presence of a square root 
linking the VIX futures price to the forward-
starting variance swap rate. The expectation 
of a square root being less than the square 
root of the expectation, an adjustment must 
be made downward from the latter in order to 
match the former. More formally, at a given 
time t, for any random variable xT

 whose value 
is revealed at time T > t, we know that

  ( ) ( )2 2
Var ( E (E (t T(rr ( t T(( [ ]( )E (t T((−)= E (  (1)
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2   THE IMPLIED CONVEXITY OF VIX FUTURES SPRING 2016

where Var
t
(.) represents the variance of a random  variable 

and E
t
(.) denotes its expectation.

Substituting the value of the VIX futures price 
at expiration, F

T
, for x

T
 into (1) and denoting the risk-

neutral probability measure by Q, we obtain

 
( ) ( ) ( )2 2

Var ( E ( E (trr
Q

T t) EQ
T t) EQ

T= −)E ( ⎡⎣⎡⎡ ⎤⎦⎤⎤  
(2)

Furthermore, because ( ) ( )E ( E Ft
Q

T t) EQ
T t) FF= =( )EQ =  

the fair value of the VIX futures price today, and because 
( ) ( )2 2) (E ( Et

Q
T t) EQ

T= =( )EQ  the forward-starting variance 
swap rate, we can express the fair value of the VIX 
futures price at time t today, expiring at time T as

 ( ) ( )2F E Var (t tF EF Q
T t) VarrQ

T−( )EQ (3)

As noted in the CBOE’s VIX White Paper [2003], 
the expression ( )Var (trr

Q
T  is the variance of the VIX futures 

prices from the present to the futures contract’s expiration, 
which can be viewed as the daily cumulative variance of 
VIX futures prices from the current time t to expiration 
time T. The adjustment for convexity therefore turns out 
representing the future volatility of volatility. Because this 
variance is a priori unknown, market participants need 

to estimate it. Its value essentially  provides the “missing 
piece” needed to determine the fair price of a VIX futures 
contract. Exhibit 1 illustrates graphically how: the larger 
the VIX

T
 level, the larger the required convexity adjust-

ment. Because the convexity adjustment consistent with 
market-observed VIX futures prices is by definition the 
market’s aggregate estimate of the future variance of these 
VIX futures prices, also referred to as “the volatility of vol-
atility,” we develop a methodology to extract it from the 
data and introduce the concept of implied convexity of VIX 
futures prices and examine its forecasting and statistical 
properties.1 Conceptually, this is analogous to extracting 
an implied volatility from option prices, because both 
implied volatility and implied convexity levels become 
the inputs needed for a formula to match market-observed 
option prices and VIX futures prices, respectively.

We do find that the empirically estimated implied 
convexity can indeed fairly accurately predict the future 
realized variance of VIX futures prices, making the 
implied convexity concept a forward-looking measure 
of VIX futures future variance. Implied convexity also 
consistently underestimates the future variance of VIX 
futures, in a way that resembles—albeit in reverse—the 
well-known pattern whereby the implied volatility of 

E X H I B I T  1
Concavity/Convexity Adjustment for Small and Large Variances

Note: This exhibit illustrates the adjustment required to reduce the square root of the forward-starting variance swap rate to the VIX futures price (by defini-
tion equal to the risk-neutral expectation of the VIX level at maturity, VIX

T
).
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an option consistently overestimates the future  realized 
 volatility of the underlying asset. Being a forecast of 
future volatility, implied convexity also naturally 
decreases as the VIX futures contract gets closer to 
expiration, because future potential volatility decreases 
with the remaining time to expiration—a phenomenon 
similar to what corporate bonds experience when get-
ting closer to maturity. These forecasted volatility levels 
can be used to better price derivative products whose 
values depend on future levels of volatility. We also find 
that implied convexity levels sometimes violate the theo-
retical condition related to the forward-starting variance 
swap rate. However, we show that such results cannot be 
turned into arbitrage-free profits for a variety of reasons 
that we will discuss in more detail. Finally, we regress 
implied convexity levels on a variety of market volatility 
factors as well as control variables and obtain statistically 
significant relations in most cases, validating intuitive 
predictions regarding implied convexity dynamics.

A BRIEF LOOK AT CURRENT MODELS 
OF VIX FUTURES PRICING

Because the underlying asset in VIX futures con-
tracts is an index of S&P 500 Index options and therefore 
not directly traded, the behavior of the VIX futures price 
series differs from that of a typical cost-of-carry futures 
contract.2 Moreover, the volatility stochastic process is not 
completely known, which leads to difficulties in designing 
an effective model for VIX futures pricing. Finally, such 
instruments are affected by mean-reversion, jumps, the 
dynamic nature of the VIX and VIX futures volatility 
over time, and the shifting term structure of volatility.

Some of the more complete endeavors to price VIX 
futures include research by Lin [2007], Zhang and Huang 
[2010], Zhu and Lian [2012], and Mencia and Sentana 
[2013]. Some papers incorporate the convexity adjust-
ment into their models using an approximation of the 
Taylor series and a selected volatility process. For example, 
Lin [2007] employed a second-order correction approxi-
mation; Lu and Zhu [2010] used a Kalman filter and a 
maximum likelihood approach to estimate their model; 
and Zhang, Shu, and Brenner [2010] used a third-order 
approximation based on a Heston stochastic volatility 
framework. Zhu and Lian [2012] compared their “exact” 
formula to other approximation methods, finding that 
these approximations can create large percentage errors 
and, through the use of simulations, show that the errors 

increase as volatility increases. However, these complex 
models contain a large number of parameters whose esti-
mation can be both challenging and unreliable. Addition-
ally, because the parameters have the potential to change 
over time, the consistency of these models is questionable. 
For example, Zhu and Lian [2012] stated that “Just as an 
issue raised in Zhang and Huang [2010], we also believe 
that searching for a reliable estimation method to deter-
mine the model parameters from market data remains a 
challenge. While our work presented in this article has 
demonstrated another alternative, complicated stochastic 
models probably will not gain popularity among market 
practitioners, until a convincing approach can be accepted 
and agreed upon by a majority of researchers.”

As such, a handful of studies such as Huskaj and 
Nossman [2013] estimated the parameters exogenously 
with some degree of success in capturing the term struc-
ture of VIX futures compared with previous studies. 
Other studies, for example, Grunbichler and Longstaff 
[1996], Zhang and Zhu [2006], and Dupoyet, Daigler, 
and Chen [2011], provided simpler, more tractable 
models involving some combination of the constant 
elasticity of variance (CEV) and Poisson jumps (gener-
ally based on the Cox–Ingersoll–Ross [1985] approach). 
Still, the stability of the results for these models over 
time needs more empirical support. In fact, empirical 
studies of such models typically show large percentage 
errors.3 Similarly, studying the volatility of volatility 
and the implied volatility skew (most important for VIX 
options), as in Wang and Daigler [2013], only seems to 
scratch the surface of this complex issue.

Rather than proposing yet another stochastic pro-
cess for the VIX and a convexity term approximation, 
we back out implied convexity values from observed 
VIX futures prices and the strip of underlying S&P 500 
options that determine the spot VIX (adjusted for time 
to expiration) and test their predictive and statistical 
properties for several periods of varying market condi-
tions, including the Fall 2008 period. Similar in concept 
to the implied volatility of an index option, implied con-
vexity provides a form of aggregate market forecast of 
the future VIX futures volatility. An obvious promising 
use for practitioners as well as academics is the ability 
of implied convexity to provide volatility forecasts. 
Moreover, implied convexity can be compared with 
the implied volatility of VIX options as an alternative 
method to examine the volatility of volatility (see Wang 
and Daigler [2013] for research on this area). Of course, 
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4   THE IMPLIED CONVEXITY OF VIX FUTURES SPRING 2016

as with implied volatility, changes in the market will 
affect future VIX futures volatility. That being said, a 
model that is a reasonable forecast of future VIX futures 
volatility will nevertheless be a useful benchmark. We 
initiate this investigation in this article.

METHODOLOGY

In this section, we detail the procedure used to 
extract the implied convexity values. First, on the day 
the VIX futures contract expires, the 30-day implied 
volatility forecast by the VIX futures is the implied vola-
tility determined from the S&P 500 options series that 
expires 30 days after the VIX futures contract’s expira-
tion. Before the expiration of the VIX futures contract, 
however, the 30-day implied volatility underlying the 
futures contract is a “forward-starting implied vola-
tility”; that is, a 30-day volatility starting at expiration 
of the futures contract. Consequently, one must calcu-
late the forward implied volatility (variance) from any 
specific day before the contract’s expiration.

In order to introduce the concept of implied 
 convexity, we first examine the calculation of variances in 
general. Over a period of N days, treating the sample mean 
as equal to zero, the return variance is calculated as

 

1
h e is the returnonday2 21

1N
r rwhere iirr

i

N

i∑σ =2

=  
(4)

Splitting the time series into two periods of lengths 
n and p, where n + p = N, we have
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 (5)

Therefore, the return variance for the full period 
can be expressed as a weighted average of the variances 
of the two subperiods, with the weights being the pro-
portion of time occupied by each variance regime:

 

2 2 2n
N

p
Nn pN

σ =2 σ +2
n σ (6)

where 2
nσ  and 2

pσ  are the return variances during the 
periods of length n and p, respectively.

It is important to note that Equation (6) is related 
to, yet different from, the usual statement that the vari-
ance of a return over a horizon or frequency of length n 
will be n/N of the variance of a return over a horizon or 
frequency of length N. This last statement requires both 
independence of the returns (so that variances are additive) 
and a constant variance over time. Alternatively, Equation 
(6) does not require such an assumption, and in fact, it is 
specifically designed to deal with possible changes in vari-
ances. Therefore, in the first period or regime of length 
n, the variance 2

nσ  could be high, and in the subsequent 
period or regime of length p, the variance 2

pσ  could be 
low, perhaps as a result of mean reversion, for instance. 
Consequently, Equation (6) simply provides a tool to com-
pute the overall variance over the full period, given that 
two different volatility regimes are experienced. However, 
in the special case where the variance is constant across 
subperiods, the formula collapses back to the usual state-
ment that the variance of returns over a horizon or fre-
quency of length n will be n/N of the variance of returns 
over a horizon or frequency of length N. Additionally, 
one could split the full sample into as many subperiods as 
needed, and Equation (6) would simply expand to more 
terms. Finally, Equation (6) also can be expressed as

 
2 2 2N n2 pn ppσNN 2 σ +2

n σ
 

(7)

This means that more generally, for three ordered 
time points or markers identified as t

1
, t

2
, and t

3,
 such 

that t
1
<t

2
<t

3
, the relationship among the variances asso-

ciated with the various corresponding periods needed 
to determine a total variance over time period 1 to 3 is 
as follows:

 
( ) ( ) ( )3 1

2 2
3 2

2

1 3 1 2 2 3t t1 t t t2
σ) = ( σ +2

t t σ)( )2 13 1t t1
σt  

(8)

where 2
t ti jt

σ  represents the variance for the period of 
time between markers i and j.4 However, in the context 
of a VIX futures contract priced at time t, expiring at 
time T, and “delivering” the future implied market vola-
tility (VIX) based on the S&P 500 options expiring in 
30 days from VIX futures expiration—and using cal-
endar days in this description—we develop Equation (9) 
providing the total variance between the present time t 
and 30 days after the VIX futures contract expires:

 ( 30 ) ( ) 3030
2 2( ) 30

230 t t T T T30 σ =30
2
t T σ)) + σ30→ +TT → →T T+ σ30 +  (9)
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where 30
2
t Tσ → +T  represents the variance between the 

present and 30 days after expiration of the VIX futures 
contract, 2

t Tσ →  is the variance between the present time 
and the VIX futures expiration, and 30

2
T Tσ → +T  is the vari-

ance between the VIX futures expiration and 30 days 
after expiration. The latter is also the forward-starting 
variance swap rate representing the implied variance 
embedded in VIX futures prices, and we can therefore 
solve for it as follows:

 

30
30 3030

2
30

2 2T t30 T t
T t t Tσ =30
2
T T

30⎛
⎝
⎛⎛ ⎞

⎠
⎞⎞ σ −30

2
t T

⎛
⎝
⎛⎛ ⎞

⎠
⎞⎞ σ→ +TT → +TT →

 
(10)

The CBOE also tracks two indexes relating to the 
spot VIX that similarly employ a portfolio of S&P 500 
options and are calculated using the methodology devel-
oped for the VIX: the VIN (the implied volatility for the 
near-term S&P 500 options expiration) and the VIF (the 
implied volatility for the far-term S&P 500 options expi-
ration). These series are the individual components that 
determine the spot VIX. Instead of representing a constant 
n-day-ahead volatility as the VIX does, however, the VIN 
and the VIF determine the volatility between the present 
and the first-month option expiration (VIN) and the vola-
tility between the present and the next-month option 
expiration (VIF). Therefore, the VIX can be computed as 
a weighted average between the VIN and the VIF.

We can employ the VIN and VIF directly to com-
pute the forward rate implied variance, if the maturity 
of the VIN corresponds exactly to that of the expiration 
of the VIX futures contract and the maturity of the VIF 
corresponds exactly to 30 days after the VIX expira-
tion. In that case, 30

2
t Tσ → +T  represents the square of the 

far-term VIX (VIF) and 2
t Tσ →  represents the square of 

the near-term VIX (VIN) in Equations (9) and (10). 
Consequently, the forward-starting variance swap rate 
in that situation is expressed as

 

= σ

= ⎛
⎝
⎛⎛ ⎞

⎠
⎞⎞ − ⎛

⎝
⎛⎛ ⎞

⎠
⎞⎞

→ +( )

30
30 30

2
30

2

2 2⎛ ⎞

E

T t+ −30
VIF

T t−
VIN

t
Q

T Tσ) T

 (11)

In reality, the horizons of the VIN and the VIF 
do not perfectly match the expiration dates of the VIX 
futures contract for the VIN and the corresponding 
30 days later for the VIF; in fact, the difference in the 
number of days between the VIN and the VIF is either 

28 or 35 days, not 30 days.5 For Equation (11) to be 
applicable, we need an adjusted horizon for the VIN to 
match that of the expiration of the VIX futures contract, 
and an adjusted horizon for the VIF to match 30 days 
after the expiration of the VIX futures contract, which 
would then provide the 30-day forward-starting vari-
ance for the VIX futures. This can be accomplished by 
judiciously weighting the VIN and the VIF indexes. 
This procedure is analogous to a linear interpolation 
of yield curve rates (term structure), albeit applied to 
the volatility term structure in this case. It is precisely 
because the volatility is not the same for different hori-
zons (as a result of expectations of mean reversion, for 
instance) that volatility levels for various terms or hori-
zons will not be equal. The weighted average performed 
is simply a linear interpolation of two volatility levels on 
the volatility term structure curve.

If the horizon of the VIN is n1
 calendar days after 

the expiration of the VIX futures contract and the matu-
rity of the VIF is n

2
 days after T+30, we can create the 

needed adjusted values for both indexes by computing
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We can then apply Equation (11) to the new hori-
zon-adjusted volatility indexes, yielding an equation for 
the forward-starting variance swap rate when time adjust-
ments are needed to match the VIX futures expiration:

= σ = ⎛
⎝
⎛⎛ ⎞

⎠
⎞⎞

− ⎛
⎝
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(14)

Finally, using the obtained forward-starting vari-
ance swap rate along with the current (time-t) observed 
VIX futures price, the market-implied convexity can 
be derived as
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 ( ) ( )2 2)IC Var ( E Ft tVarrQ
T t) EQ

T t) FF= =)Var ( −  (15)

where IC
t
 is the implied convexity, ( )Var (trr

Q
T  is the 

expected variance of future VIX futures prices between 
time t and time T, ( )2Et

Q
T  is the forward-starting 

variance swap rate computed in (14), and 2FtFF  is the 
square of the current price of the VIX futures contract 
expiring at time T.

DATA

VIX futures contracts started trading in March of 
2004. Therefore, VIX futures prices and volatility are 
observable since that date. The forward-starting variance 
swap rates needed for the spot VIX comparison are not 
traded on exchanges, but they can be determined from 
the value of a portfolio of S&P 500 options. Therefore, 
we take advantage of publicly reported volatility indexes 
that ref lect the prices of S&P 500 option portfolios to 
generate forward-starting variance swap rates according 
to the methodology described earlier.

We obtain daily data for the VIN and VIF series 
defined in the previous section from TradeStation from 
August 25, 2008, to July 29, 2015.6 When necessary, 
the series are adjusted according to Equations (12) and 
(13), respectively. The VIN and VIF roll over exactly 
one week prior to the third Friday of each month, with 
the third Friday being the expiration of the S&P 500 
options. Therefore, any unusual behavior in the options 
in the last week (as part of the VIN) does not inf lu-
ence the indexes. The VIN horizon (n

1
) is calculated as 

the number of minutes remaining between time t and 
one week prior to the third Friday of each month. The 
VIF horizon (n

2
) is calculated as the number of minutes 

remaining between time t and one week prior to the 
third Friday of the following month. The adjusted VIN 
and VIF are used to estimate the forward-starting vari-
ance swap rate as presented in Equation (14).

VIX futures data are obtained from the CQG Data 
Factory for all contracts expiring between August 2008 
and July 2015. The VIX futures series employed here 
is composed of only the nearby contracts. We roll over 
to the next nearby contract on the Monday before the 
third Friday of every month in order to avoid any pricing 
issues related to the settlement of the futures contract. 
The last bid and ask of the VIX futures prices comprise 
the daily closing values for the analysis. Finally, the daily 
closing level of implied convexity is determined from 

the daily closing VIX futures mid-price and the con-
temporaneous forward-starting variance swap rate using 
Equation (15).

IMPLIED CONVEXITY PROPERTIES 
AND RESULTS

Given the lack of prior studies on the behavior 
of implied convexity, a reasonable starting point is to 
examine the time series history of the measure. Exhibit 2 
displays VIX index levels (Panel A) and implied con-
vexity levels (Panel B) from August 2008 through 
July 2015. This exhibit shows that the highest levels of 
implied convexity occur during periods when the VIX 
also peaks. Visually, the implied convexity exhibits large 
positive spikes; moreover, the speed of mean reversals in 
the implied convexity series is higher than that of the 
VIX. Furthermore, the implied convexity is fairly stable 
as the VIX reverses to lower levels.

The important characteristics observed in Exhibit 2 
are logical for two reasons. First, implied convexity is the 
market’s aggregate forecast of the future realized vari-
ance of VIX futures prices between now and the futures 
contract’s expiration. Thus, implied convexity represents 
the variance of futures prices, not returns. This is impor-
tant because for a given level of return variance, a higher 
price will display a higher level of variance, simply due to 
the scaling effect. Additionally, because a high spot VIX 
level produces high VIX futures prices, this will gen-
erate high implied convexity values, because the implied 
convexity is an estimate of the future realized variance 
of VIX futures prices. Conversely, lower VIX levels will 
generate lower VIX futures prices and commensurably 
lower implied convexity values. In conclusion, the size of 
the convexity adjustment is strongly positively correlated 
to the level of the VIX, as shown in Exhibit 2.

The second reason for which the results in Exhibit 2 
are sensible is the fact that mean-reversion occurs faster 
for the convexity adjustment than it does for the VIX 
itself. If the market anticipates the VIX to gradually 
continue on a downward trend after an initial decline, 
then the convexity adjustment should be affected in two 
ways: First, the VIX will trend toward a lower value and 
thus the future realized futures variance associated with 
that lower VIX level would decrease (as explained in 
the previous paragraph). Second, to the extent that this 
downward trend is not expected to be unusually erratic, 
the variance of the VIX futures price returns would also 
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THE JOURNAL OF DERIVATIVES   7SPRING 2016

decrease. Because the implied convexity is an estimate 
of the futures price variance, and because the variance 
of prices is a function of both the variance of returns 
and of price levels,7 the combination of these two effects 
will lower the convexity adjustment, thus accelerating 
the mean reversion of the implied convexity compared 
with that of the underlying VIX.

Exhibit 2 also shows that the implied convexity can 
sometimes dip below zero, a counterintuitive phenom-
enon considering the fact that the theoretical variance of 

the VIX futures prices can never be negative. By defini-
tion, implied convexity should always be positive, because 
it is a forecast of the variance of VIX futures prices from 
time t until contract expiration, According to Equation 
(15), a negative implied convexity occurs when the square 
of the VIX futures prices F

t
2 is larger than the forward-

starting variance swap rate estimated in Equation (14).8 
The fact that negative implied convexity values are a 
common occurrence in practice shows that VIX futures 
often trade above their theoretical upper bounds.

E X H I B I T  2
Daily Closing Levels of the VIX and Implied Convexity (IC) from August 2008 to July 2015

Notes: This exhibit shows the historical level of the VIX (Panel A) and of the implied convexity (Panel B) from August 2008 to July 2015. The “Zero” 
gradient line corresponds to the lower bound of IC. For illustration purposes, IC levels are capped at 0.1.
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8   THE IMPLIED CONVEXITY OF VIX FUTURES SPRING 2016

The resulting violations from the theoretically 
impossible negative implied convexity values suggest 
violations of the “strict” theoretical argument. Con-
sequently, investment strategies using VIX futures 
should consider implications of said “mispricing” for 
the management of the portfolio. Additionally, a theo-
retical pricing violation in this context does not have 
the same consequences as it would in a cost-of-carry 
setting, where arbitrage strategies quickly bring prices 
back in equilibrium. A few considerations make these 
violations difficult to take advantage of directly. First, 
trading the forward-starting variance swap rate entails 
buying a continuum of options of two different maturi-
ties, a task that would involve large transaction costs. 
Second, because there is no cost-of-carry relationship, an 
arbitrage strategy involving the buying of the forward-
starting variance swap rate and the selling of the VIX 
futures contract—when the convexity adjustment would 
presumably be negative and the square of the VIX futures 
price “wrongly” above the forward-starting variance 
swap rate—would still not be able to guarantee a profit, 
given that the rate at which one would borrow the funds 
needed to purchase the portfolio of options designed to 
replicate the forward-starting variance swap rate would 
impact the final profit. Finally, and most importantly, 
the strategy would call for the need to sell the square of 

the futures contract. Although this at first might appear 
impossible, one could technically sell 15 VIX futures 
contracts when they trade at a price of $15. As the futures 
price begins changing, however, dynamic adjustments 
would have to be made, thereby increasing trading costs 
further. Additionally, decimals in the price would not be 
accounted for, turning the strategy into an approxima-
tion exercise that could potentially wipe off profits.

Exhibit 3 displays the summary statistics for the 
implied convexity levels by year in Panel A and by 
quintile in Panel B. Panel A shows that implied con-
vexity exhibited its highest value of 0.2286 as well as its 
lowest value of –0.0816 during the last four months of 
2008. Since 2008, the volatility in implied convexity has 
generally declined. Overall, implied convexity exhibits 
positive skewness and a relatively large kurtosis. During 
some years (2010, 2012, and 2013), however, implied 
convexity exhibited negative skewness. The results in 
Panel B also demonstrate that high levels of positive 
implied convexity (quintile 5) possess a very large range 
of values. These results are also evident in Exhibit 4, 
which shows the implied convexity’s frequency distri-
bution over the sample period. In particular, Exhibit 4 
points at a large aggregation of data points around zero 
that appear almost normally distributed, as well as the 
presence of a large number of positive outliers.

E X H I B I T  3
Summary Statistics for Daily Closing Levels of Implied Convexity

Notes: Panel A presents the summary statistics for the daily closing levels of implied convexity for the entire sample and by year. Panel B shows the implied 
convexity statistics by quintiles, where quintile 1 is the lowest quintile and quintile 5 is the highest quintile. Means that are statistically different from zero 
(p = 0.05) are in italics.
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THE JOURNAL OF DERIVATIVES   9SPRING 2016

Exhibit 5 presents the overall historical level per-
centiles of implied convexity, as well as by year. Over 
the sample time period, the median daily closing implied 
convexity level is –0.0002. The 50th, 75th, and 95th 
percentile ranges show that implied convexity oscil-
lates within a narrow range the majority of the time. 
As market volatility continuously evolves, however, so 
does implied convexity. The results in Exhibit 5 clearly 
show that substantial year-to-year variations in implied 
convexity levels exist. Such results are to be expected, 
because the VIX itself f luctuates considerably during 
the sample period, creating an increase in the volatility 
of the VIX and related VIX futures prices, which in 
turn directly affects implied convexity levels. Although 
negative implied convexity values are found in all of 
the sampled years, since 2008 the median implied 
convexity levels have generally remained very close to 
zero. In fact, the 5% and 95% cutoff values for implied 
convexity in Exhibit 5 have generally trended toward 
zero during this period. Overall, these results show 
that the distribution of convexity values has evolved 
over time.

Implied Convexity as an Estimate of the 
Future Realized VIX Futures Variance

The implied convexity component should ref lect 
the market’s expectation of the future realized variance 
of VIX futures prices between the present time and con-
tract expiration. Panel A of Exhibit 6 displays the mean 
value of the future VIX futures price variance and the 
implied convexity by calendar days left until VIX futures 
contract expiration. The exhibit shows that both the 
VIX futures variance and the implied convexity steadily 
decline as the VIX futures contract becomes shorter in 
duration, which is expected with less time remaining 
until the futures contract’s expiration. As such, Panel A 
shows that implied convexity is positively related to VIX 
futures time to expiration. This relationship brings into 
question whether implied convexity is related to other 
characteristics of the VIX futures contract or its under-
lying asset, such as the volume (liquidity) of the VIX 
futures and the presence of jumps in the VIX series.9

Panel A of Exhibit 6 also shows that implied con-
vexity exhibits a jagged pattern and displays a dip below 

E X H I B I T  4
Frequency Distribution of Implied Convexity

Note: This exhibit shows the distribution of the implied convexity daily closing values for a period going from August 2008 to July 2015.
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10   THE IMPLIED CONVEXITY OF VIX FUTURES SPRING 2016

E X H I B I T  6
Realized VX Variance and the Implied Convexity

E X H I B I T  5
Normal Ranges for daily closing levels of implied convexity over the sample period

Notes: This exhibit shows the distribution of daily closing levels of implied convexity by percentiles for the entire dataset and for each year of the data, 
as well as the range between the 95th and 5th percentiles.
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THE JOURNAL OF DERIVATIVES   11SPRING 2016

zero with 13 days to expiration.10 Alternatively, the future 
realized VIX futures variance exhibits a smoother pat-
tern and by definition remains above zero even when 
the VIX futures contract is close to expiration. Panel B of 
Exhibit 6 reports results when the future realized variance 
is regressed on the implied convexity and the maturity of 
the contract. All coefficients, including the constant, are 
highly statistically significant, with an adjusted R-squared 
of 91%. Overall, the implied convexity forecasts the VIX 
futures variance very closely, as can also be seen graphi-
cally in Panel C. Therefore, implied convexity can on 
average be used as a reliable and accurate forecast of future 
volatility of volatility. In this context, its use as a proxy for 
the volatility of volatility can prove useful in models that 
need to estimate a forward-looking measure of volatility 
of volatility, such as VIX options pricing models.

Violations of the VIX Futures Upper Bound

Previously, we established that implied convexity 
values can sometimes be negative, indicating that the 
VIX futures contract can trade above its theoretical upper 
bound. To examine this phenomenon more closely, we 

determine the VIX futures price that would eliminate 
this violation (i.e., the value that would make the nega-
tive implied convexity values equal to zero) for each 
day in the sample. We find that this adjustment value is 
almost always outside of the VIX futures bid–ask spread 
(92% of all violations), except for a few cases when the 
violation is very small.

Exhibit 7 shows the frequency distribution of the 
adjustment relative to the size of the bid–ask spread, 
showing that the majority of the time the adjustment 
is in excess of 100% of the bid–ask spread, and that 
it is often much larger. Given the signif icant size of 
the adjustment needed to correct for the VIX futures 
upper bound violation, we explore its relationship to 
implied convexity levels. Exhibit 8 shows the results 
of a regression where the adjustment is the dependent 
variable and the implied convexity is the independent 
variable. Overall, the results show a significantly large 
regression R-squared of 78% (adjusted for VIX futures 
maturity), meaning that implied convexity is strongly 
related to the upper bound adjustment. When the 
data are  separated into quintiles based on the size of 
the implied  convexity, the results remain statistically 

Notes: Panel A of Exhibit 6 shows the average implied convexity daily closing levels (IC) and the realized VIX futures (VX) variance of the nearby 
contract averaged by days remaining to VX maturity. Panels B and C show the regression results where the VX variance is regressed against the average 
implied convexity by days remaining to VX maturity.

E X H I B I T  6  (Continued)
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12   THE IMPLIED CONVEXITY OF VIX FUTURES SPRING 2016

 significant, and the adjusted R-squared values are high. 
Therefore, implied convexity is an important explana-
tory variable for the size of the VIX futures upper bound 
violations.

Implied Convexity in Relation to Stock 
Market Volatility

In this section, we perform an additional verification 
of the theory that market volatility and implied convexity 
should be related. Theoretically, if market volatility is high, 
the VIX is high, VIX futures prices are high, and conse-
quently, the variance of the VIX futures would also be high. 
The opposite relationship is true when market volatility 
is low. Thus, a direct link should exist between implied 
convexity and various market volatility measures.

Exhibit 9, Panel A, displays regression results 
between implied convexity and the prior 30-day his-
torical variance of the S&P 500, computed as the average 
squared return.11 The purpose of this regression is to 
measure the extent to which prior volatility in the market 
is associated with current implied convexity. The results 
show that recent realized market volatility and current 

E X H I B I T  7
Frequency Distribution of the Downward VIX Futures Price Adjustment Needed to Avoid a VIX Futures Upper 
Bound Violation (as a Percentage of the VIX Futures Bid–ask Spread)

Notes: This exhibit shows the frequency distribution for the VIX futures downward adjustment needed in order to prevent an upper bound violation of the 
VIX futures, as defined by Carr and Wu [2006]. The adjustment is expressed as a percentage of the VIX futures bid–ask spread. Only violations that 
fall outside of the bid–ask spread are shown (94.93% of all violations), all of which fall below the VIX futures bid price.

E X H I B I T  8
Regression Results for Adjustment Needed To 
Correct VIX Futures Upper Bound Violation 
Regressed on the Implied Convexity

Notes: This exhibit shows the results of the regression where the adjust-
ment in the VIX futures price (needed to correct the VIX futures upper 
bound violation that occurs when implied convexity is negative) is the 
dependent variable and the implied convexity closing level and VX con-
tract maturity are the independent variables. T-values are reported in 
parentheses below the regression coefficient. Note that the total number of 
observations is based on the number of negative implied convexity values. 
Therefore, only the first three quintiles have observations, and the number 
of observations here is lower than the total number of observations in 
the sample period. Quintile 1 represents the smallest implied convexity 
values.
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THE JOURNAL OF DERIVATIVES   13SPRING 2016

implied convexity levels possess a positive and significant 
relationship in general, with the historical variance of 
the S&P 500 index explaining approximately 12% of 
the variation in implied convexity for the entire time 
period when controlling for the VIX futures horizon 
of the nearby contract. Grouping the data by implied 
convexity quintiles shows that only the very high (quin-
tiles 4 and 5) and very low (quintile 1) levels of current 
implied convexity are significantly related to recent real-
ized historical market volatility, with 41%, 19%, and 
26% adjusted R-squared values, respectively. As such, 
the results show that the relationship between historical 
market volatility and current implied convexity becomes 
evident for extreme values of implied convexity; other-
wise, any relationship is undetectable.

A similar relationship is found between implied 
convexity and implied market volatility. The results in 

Exhibit 9, Panel B, show that implied market volatility 
(the VIX) has a positive and significant relationship with 
the implied convexity when the implied convexity is 
very high (quintiles 4 and 5) and very low (quintile 1). 
Adjusting for the nearby VIX futures contract horizon, 
implied market volatility explains approximately 42%, 
17%, and 26% of the total variation in implied convexity 
for quintiles 4, 5, and 1, respectively. The relationship 
between VIX and implied convexity can be visualized 
in Exhibit 10, where the positive relation is evident for 
very large and very small values of implied convexity (or 
of the VIX). Additionally, the exhibit shows that large 
absolute values of implied convexity are almost always 
positive. Overall, the results show that when implied 
convexity deviates largely from zero, its levels contain 
information associated with historical and expected 
market volatility.

E X H I B I T  9
Regression Results for Implied Convexity Regressed on the Prior Month for the S&P 500 Return Variance and on 
the VIX Daily Closing Levels

Notes: Panel A provides the regression where the dependent variable is the daily closing level of implied convexity and the independent variables are the 
S&P 500 return variance over the prior 30 days (computed as the average squared return) and the time to maturity of the nearby VX contract. Panel B 
displays the results of the regression where the dependent variable is the daily closing level of implied convexity and the independent variables are the daily 
closing level of the VIX and the time to maturity of the nearby VX contract. The data are annualized for consistency. Quintile 1 represents the smallest 
implied convexity values and t-statistics are reported in parentheses below the regression coefficients.
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14   THE IMPLIED CONVEXITY OF VIX FUTURES SPRING 2016

POTENTIAL VIOLATIONS OF THE MODEL

All models are based on assumptions designed to 
allow for tractable closed-form solutions. The Carr and 
Wu [2006] approach of presenting a lower and upper 
bound for the price of the VIX futures contract is based 
on several such assumptions. In conjunction with Jensen’s 
inequality, the lower bound for the VIX futures price is 
the forward-starting volatility swap rate, and the upper 
bound is the square root of the forward-starting vari-
ance swap rate. In the following sections, we discuss the 
Carr and Wu [2006] simplifying assumptions. Although 
each assumption can be empirically analyzed in detail, 
we argue how possible assumption violations should be 
minimal; therefore, rare violations should not materially 
affect the results. Moreover, an extensive examination 
of each assumption is beyond the scope of this article, 
is constrained by article length, and is left for future 
research if needed.

Jumps in the Volatility Process

One element to consider is the fact that the proof 
in Carr and Wu [2006] assumes that the volatility price 
process is continuous. If instead one allows for jumps, 
the future realized variance is then a combination of 
the variances arising from the quadratic variation of the 
diffusion component of the process and the quadratic 
variation of the jump component of the process. In fact, 
Broadie and Jain [2008] noted that the effect of ignoring 
jumps in computing the fair variance swap rate from the 
portfolio of S&P 500 options used in the VIX definition 
could be significant. Therefore, we proceed to test for 
the presence of jumps in the (spot) VIX as a means to 
verify whether the continuous volatility assumption in 
Carr and Wu [2006] could be violated.

Various non-parametric methods designed to iden-
tify the occurrence of jumps in stochastic processes have 
emerged in the last few years (for example, see  Ait-Sahalia 

E X H I B I T  1 0
Relationship between VIX and Implied Convexity

Notes: This exhibit plots the implied convexity’s daily closing values (vertical axis) against the VIX daily closing values (horizontal axis). The sample 
period extends from August 2008 to July 2015.
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THE JOURNAL OF DERIVATIVES   15SPRING 2016

[2002], Carr and Wu [2003], Barndorff-Nielsen and 
Shephard [2006], and Jiang and Oomen [2008], to name 
a few). We choose to implement the straightforward test 
found in Lee and Mykland [2008], both for its intuitive 
appeal as well as for its ability to outperform the non-
parametric jump tests of Barndorf–Nielsen and Shephard 
[2006] and Jiang and Oomen [2008].

The statistic L(i) tests at time t
i
 whether there is a 

jump in the process S(t) from t
i-1

 to t
i
 and is defined as 

follows:
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Using daily frequencies, we adopt the Lee and 
Mykland [2008] recommended optimal window size 
K of 16 days. For n, the number of observations, and 

2/c = π2/ , let
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The actual test is then whether the ratio ( )L ( C
S

n

n

−  is 
above the critical value corresponding to the chosen sig-
nificance level. Because under the null hypothesis of no 
jumps, the ratio has a cumulative distribution function 
of the form exp(–e-x), the critical value corresponding to 
the 1% upper tail will therefore be β* = –ln(–ln(0.99)).

We test for the presence of jumps in the VIX over 
our entire sample period at the 5% significance level. 
We determine that a total of only 17 likely instances of 
jumps occur. Because the sample period contains 1,735 
observations (trading days), this is the equivalent of less 
than 2.5 days per year. By comparison, Lee [2012] inves-
tigated the predictability of jump arrivals in U.S. stock 
markets, identifying the number of jumps experienced 
by individual equities from the DJIA and the S&P 500 
Index from January 4, 1993, to December 21, 2008. 

The associated average number of jumps per security is 
21.79 per year. Therefore, we conclude that the assump-
tion of a continuous process by Carr and Wu [2006] is a 
reasonable one for the VIX, at least in the context of our 
study. Accordingly, our computed variance swap rate is 
consistent with the conclusion that it is essentially free 
of any jump-related bias.

Finally, for completeness, Exhibit 11 shows the 
results of a multivariate regression where implied con-
vexity is regressed against the presence of jumps in the 
VIX (dummy variable, 1 for jump and 0 otherwise) and 
the volume of the nearby VIX futures contract. Like 
before, we control for the number of days left to matu-
rity of the nearby VIX futures contract. The results show 
that implied convexity is significantly related to the VIX 
futures’ volume, whether implied convexity is negative 
or positive. However, implied convexity is not related 
to the presence of a jump in the VIX series.

Approximation Error

The Carr and Wu [2006] lower and upper bound 
proof is based on a continuous range of option strikes, 
whereas the actual VIX (and VIN and VIF) employ 

E X H I B I T  1 1
Relation of implied convexity (IC) to the presence of 
jumps in the VIX, VIX futures volume, and the VIX 
futures time to expiration

Notes: This exhibit displays the results of the regression where the implied 
convexity is the dependent variable and the presence of jumps in the VIX 
(dummy variable), VIX futures volume (contract liquidity), and VIX 
futures time to expiration are the independent variables. IC– and IC+ 
denote negative and positive values of implied convexity, respectively, 
while t-statistics are reported in parentheses below the regression coeffi-
cients. Regression coefficients for VX Volume are shown in scientific nota-
tion for readability.
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16   THE IMPLIED CONVEXITY OF VIX FUTURES SPRING 2016

discrete strikes for out-of-the-money options with non-
zero bids until two adjacent non-zero bids occur. Jiang 
and Tian [2007] examined biases associated with the dis-
crete and truncation calculation procedure of the CBOE, 
leading to a misspecification of true volatility, especially 
in regards to the term structure of volatilities. This bias 
translates to the VIN being relatively more downward 
biased than the VIF at high volatility levels, causing 
the upper bound to be downward biased. However, the 
importance of this bias is suspect, because the simulation 
study employed by Jiang and Tian [2007] to achieve the 
results employs an unrealistically large range of strike 
prices relative to real-life strikes. Moreover, only the 
relative difference between VIN and VIF would affect 
the term structure of volatility. Consequently, using the 
actual strike series employed by the markets would have 
a minimal bias on the outcomes found in this study.

Settlement Procedure

As examined in Pavlova and Daigler [2008], a 
settlement bias exists due to the procedure employed to 
determine the individual option prices used to calcu-
late the VIX futures settlement price. In particular, any 
option employed to calculate the VIX at the open on the 
Wednesday settlement day uses the trade price at 8:31 a.m. 
Central Time if a trade exists, rather than the average of 
the bid–ask price used to calculate the VIX, VIN, and VIF 
indexes. Pavlova and Daigler [2008] determined that large 
differences existed through mid-May 2007 for certain 
expirations between the spot VIX and the VIX futures 
settlement value. Only 6 of 33 months, however, had 
biases where the VIX futures price was larger than the spot 
VIX at futures expiration (i.e., situations consistent with 
a negative implied convexity). Thus, biases due to settle-
ment in past expirations do not generally promote nega-
tive implied convexities. Moreover, market participants 
report that the settlement bias in recent years is near zero. 
Consequently, previous literature does not support the 
settlement bias causing the negative implied convexities.

CONCLUSION

The most interesting aspect of VIX futures prices 
is a convexity adjustment whose value is an estimate of 
their future realized variance between now and the expi-
ration date of the contract, bridging the gap between the 
forward-starting variance swap rate and the squared VIX 

futures price. Rather than positing a stochastic process 
for the VIX, we approach the problem in a novel way 
by solving for the convexity implied by the difference 
between the forward-starting swap rate (determined by 
the adjusted value of the next two expirations of the S&P 
500 options series) and the square of the current VIX 
futures price and proceed to evaluate its predictive and 
statistical properties.

Our main result is that the implied convexity 
adjustment can indeed be a useful forecast of the future 
volatility of VIX futures levels. The most important 
implication of our study is that implied convexity is a 
generally reliable and accurate estimate of future VIX 
volatility, which can be used as an input to any deriva-
tive model involving the volatility of volatility as in the 
case of VIX options pricing models. The implied con-
vexity consistently, albeit at a small scale, underestimates 
realized VIX futures variance—a phenomenon that is 
the opposite of the well-known relationship between 
implied volatility and realized volatility.

Examining the characteristics of the implied con-
vexity adjustment using daily data, our results also show 
that the implied convexity daily values can sometimes be 
negative, falling outside the theoretical range; however, 
we are able to rule out arbitrage opportunities. We also 
confirm the positive relationship between implied con-
vexity and various market volatility measures and rule out 
a series of possible model assumption violations, such as 
jumps, approximation error, and settlement procedure.

ENDNOTES

1Whereas this convexity adjustment might not be 
“implied” in the pure conventional model-dependent sense, 
it is nevertheless implied by the difference between the for-
ward-starting variance swap rate and the square of the VIX 
futures price.

2Tradable out-of-the-money S&P 500 options do 
determine the underlying spot VIX. However, several factors 
make this spot “asset” difficult to trade on a risk-free basis for 
arbitrage purposes. One major factor is that the portfolio of 
options would need to be dynamically traded to make it always 
equivalent to the underlying spot index used for VIX futures 
settlement. Such trading would be costly; moreover, many 
of the needed options have limited liquidity. Another issue 
includes the uncertainty that the settlement procedure creates; 
that is, actual option prices traded at the opening of settlement 
day are employed to calculate the settlement price rather than 
the bid–ask average used to calculate the spot VIX.
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3An example of empirically testing a VIX futures model is 
by Zhang and Zhu [2006], who developed and tested a stochastic 
variance model for the evolution of the VIX over time. How-
ever, their model overprices VIX futures by 16%–44%. When 
using only one year of data, parameter fitting reduces the errors 
to 2%–12%. Additionally, the time period they employed was 
a very low volatility period, unlike any time period that would 
include 2008. Zhu and Lian [2012] developed a VIX futures 
pricing model displaying stochastic volatility and simultaneous 
jumps for both the underlying asset and the corresponding vola-
tility, with the Heston [1993] stochastic volatility model as the 
underlying volatility process. They found that jumps in the 
underlying asset improve the pricing of VIX futures, whereas 
jumps in volatility do not. Their empirical comparisons of the 
various models and their individual factors are interesting. The 
results of their model with different volatility processes typically 
show errors in excess of 5%, however, and the data series ends 
before the volatile period in Fall 2008.

4Note that the variances may or may not be annualized, 
but they should ref lect the same frequency of returns. For 
instance, the variances could ref lect daily, weekly, or monthly 
returns, as long as they are all of the same frequency type. 
Thus, one can easily annualize all the variances by simply 
multiplying both sides of Equation (8) by the proper scaling 
factor.

5The VIN and the VIF are based on the S&P 500 index 
option contracts that expire on the third Friday of the expira-
tion month. Alternatively, VIX futures contracts expire on 
the Wednesday that is 30 days prior to the third Friday of the 
calendar month immediately following the month in which 
the futures contract expires. Additionally, there are also some 
unusual cases where the VIN and the VIF do not “straddle” 
the VIX (in terms of expiration dates) due to the timing of the 
rollover of the S&P 500 option contracts occurring the week 
before the expiration of the VIX futures contract, creating 
even larger timing differences between the expirations of the 
futures contract, the VIN, and the VIF.

6Data are not available for the nearby and far-term VIX 
series prior to August 25, 2008.

7Given a certain return volatility, a higher price will 
imply f luctuation levels of larger magnitude, translating into 
a higher price variance.

8The upper bound of the VIX futures price is equal to 
the square root of the forward-starting variance swap rate, 
as shown in Carr and Wu [2006]. This is because the price 
of the VIX futures is the expected value of the square root 
of future expected variance, which is always smaller than 
or equal to the square root of the expected value of future 
expected variance. As such, implied convexity is negative 
if and only if the VIX futures price is above its theoretical 
upper bound and positive if and only if the VIX futures price 
is below its theoretical upper bound.

9Jumps are examined in detail in another section.
10Thus, in Exhibit 6, Panel A, the average values for the 

implied convexities for each day before expiration are positive 
(except for day 13), whereas some extreme observations in 
the sample can possess negative values.

11The regressions between implied convexity and dif-
ferent market measures use a constant one-year horizon 
implied convexity. To obtain the one-year constant maturity 
implied convexity, we divide the implied convexity backed 
out of Equation (15) by the number of calendar days left to 
the VIX futures expiration and multiply it by 365.
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