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a b s t r a c t

We explore a simple lattice field model intended to describe statistical properties of
high-frequency financial markets. The model is relevant in the cross-disciplinary area of
econophysics. Its signature feature is the emergence of a self-organized critical state. This
implies scale invariance of themodel, without tuning parameters. Prominent results of our
simulation are time series of gains, prices, volatility, and gains frequency distributions,
which all compare favorably to features of historical market data. Applying a standard
GARCH(1,1) fit to the lattice model gives results that are almost indistinguishable from
historical NASDAQ data.

Published by Elsevier B.V.

1. Introduction

From a reductionist perspective the statistical physics of a large number of dynamical systems in nature originates from
nonlinear processes at the microscopic level. In many cases, this leads to phenomena characterized in the literature by the
terms of chaos, complexity, fractal geometry, and criticality. These scenarios are quite ubiquitous, thus not limited to basic
physical systems, where turbulence comes tomind for example, but also to applications in biology, geology, social networks,
economic systems, and finance, to name a few [1]. The literature on the subject is prodigious.

Our current interest in the subject stems from a recent simulation of financial market dynamics [2]. At the root of that
study is a microscopic model based on the principle of gauge invariance, assuming that one of the keymechanisms of trader
behavior is independent of any scale (currency unit, for example) used in the market transactions [3]. In technical terms,
the model is a quantum field theory based on the gauge group G = R+, the dilation group, which implies scale invariance of
the market model with respect to ordinary multiplication of prices with positive real numbers. The quantum aspect of that
model implements the empirical observation that arbitrage opportunities, i.e. realizing a profit via transactions in different
markets, vanish quickly because of market dynamics.

At this stage, the model does not provide a mechanism for describing a complex system, as it should, given the empirical
evidence. The distribution of market returns, if analyzed appropriately [2], exhibits fat tails (probabilities larger than
Gaussian) the likes of which are observed in many high frequency financial markets. However, this is not a consequence
of the intrinsic dynamics of the model. In order to remedy this situation, in the present article, we study an abridged model
with local interactions that lead to a self-organized complex market model. Although our goal is to eventually combine
the gauge model with features of the abridged model discussed here, the latter, despite its simplicity, produces salient
characteristics of actual financial markets surprisingly well. Among those are the semblance of return time series, returns
frequency distributions, and the nature of volatility. Themarket volatility, in particular, is a subject of intense research [4–6].
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These features are promising enough to study this simple model in its own right, which is the subject of this work. Along
a one-dimensional lattice representing discrete time, the field on the sites are interpreted as returns in a model market. An
updating algorithm is then applied which is loosely fashioned after the well-known proposal by Bak, Tang and Wiesenfeld
(BTW) [7]; see also Refs. [8,9,1,10]. The idea is to develop a market model that is driven by microscopic entities, say traders,
such that their interaction leaves the lattice field in a self-organized critical (SOC) state. In a critical state, among other
things, long-range correlations of suitable observables lead to power law behavior with respect to scaling transformations.
Self-organization means that the system is driven to criticality without fine-tuning any external parameters, i.e. solely by
its intrinsic dynamics.

It is generally realized that financial markets, being prime examples of social systems, exhibit SOC [11–15]. However, to
the best of our knowledge, attempts tomodel those fromamicroscopic point of vieware rare [16]. In Refs. [17,18] percolation
clusters act as investors. Assigning random percolation probabilities, power law behavior is found for the usual observables
derived from stock market prices [19]. Another example of such an attempt close to the BTW evolution model is the work
of Bartolozzi et al. [20]. Though close to our work in spirit, significant differences exist in terms of the updating strategy and
interpretation. Our implementation of our lattice field model will produce price time series, returns and their distributions,
volatility time series and their clustering features that are all strikingly similar to historical market data.

Whywould one like to have amarketmodel in the first place? After all there aremyriads of historical data being collected
every day. A good reason is the fact that all of the collected data aremerely instances of a randomdraw from someprobability
distribution, just like one throw of dice gives only one result, hiding the statistics behind it. A stochastic model on the other
hand will enable us to study any number of market instances, and collect ensembles in the language of statistical physics.
Observables, as averages endowedwith errors, could be computed. Ultimately, a successful model could provide probability
distributions for future prices, and thus be an invaluable tool for risk analysis, and the like.

2. Lattice model

We consider the simplest latticemarketmodel conceivable, a one-dimensional chain of n+1 sites with labels j = 0 . . . n,
where j indicates discrete time t = j∆ in steps of some arbitrary unit ∆. The sites are populated with a real-valued field r
with components rj ∈ R. As it turned out it is essential to interpret the field components rj directly as investment returns.
The returns are defined as

rj = log(Φj/Φj−1) (1)

whereΦj = Pj/C is the price of an investment instrument, such as a stock or index fund for example, and C is a unit (currency,
shares, etc.). The continuum version of (1) can be surmised from taking the limit ∆→ 0 in

log(Φ(t)/Φ(t −∆)) = ∆
d
dt

logΦ(t)+ O(∆2), (2)

where Φ(t) = Φj at t = j∆.
If we understand the linear lattice as a stand-alone model, the interpretation of rj as investment returns is supported,

with hindsight, only by the outcome of the simulation. However, there is a rather revealing connection to the gauge field
model mentioned in the Introduction [2,3] that lends additional support to this interpretation. The discussion of a single-
asset gaugemodel in Section 5:4 of Ref. [3] is relevant to our case. Fixing the gauge such that cash and the asset aremeasured
in the same unit turns out to be convenient. The curvature field, living on the dual lattice, inherits the arbitrage gains from
the plaquettes of the gauge field. In Appendix A, we have adapted those deliberations within the context of Ref. [2], adding
a few facets. Within that framework the returns rj naturally correspond to the arbitrage gains of the gauge model.

In order to endow the field r with dynamics we find inspiration in the popular evolutionary model by Bak and Sneppen
[9,1,10]. In that context, the field components are fitness values, say fj ∈ [0, 1], assigned to the sites of a lattice. The updating
process consists in finding the site js with fjs = min{fj : j = 0 . . . n}, i.e. the least adapted species. Then fjs and the values fjs±1
of the two next neighbors are replaced with uniformly distributed random numbers from [0, 1]. This prescription, when
iterated many times s = 0, 1 . . .∞, leads to a stationary state of the lattice field where a single perturbation can lead to a
burst of activity, called an avalanche. The frequency distribution of avalanche sizes is found to follow a power law. A power
law is a signature feature of a critical state. Since no tuning of a model parameter is needed, the phenomenon is known
as self-organized criticality (SOC). The model is very robust in the sense that changing the updating prescription, within
reasonable bounds, will still lead to SOC. A rigorous discussion, containing analytical results, may be found in Ref. [10].

In the context of the financial market model we adopt a modified version of Bak’s updating prescription. We select
periodic boundary conditions with period n+ 1, such that rn+1 = r0 and r−1 = rn. In terms of the returns rj, we define

vj = rj(rj+1 − rj−1) (3)

Vj = |vj| (4)

and call

V = max{Vj : j = 0 . . . n} (5)
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Fig. 1. Illustration of the geometry of the lattice model and the label scheme for the sites. Periodic boundary conditions rj+n+1 = rj are implemented.
Updating is done on the field component with signal V , and its two next neighbors.

the signal of the field configuration r . The updating strategy then proceeds with finding a site js from1

js ∈ {j = 0 . . . n : Vj = V }, (6)

and then replacing the returns on sites js and its two neighbors according to

rjs ← x0 and rjs±1 ← x±1 (7)

where x0 and x±1 are three random numbers drawn from a normal distribution p(x) ∝ exp(−x2/2w) while enforcing the
constraint x−1 + x0 + x+1 = 0. The variance w is a parameter. Fig. 1 illustrates the situation.

Within reason, we have experimented with numerous alternative definitions for the signal, defined through (3)–(5).
Overall, it appears that Bak updating is very robust and SOC is easily achieved. However, the choice (3)–(5) proved to best
match the stylized features of historical financial market data.

Although (3)–(5) were mostly selected on empirical grounds, in retrospect, more motivation may be provided: note that
(3) is just a discretized version of

v(t) = r(t)2∆
dr(t)
dt
= ∆

d
dt

r(t)2 (8)

where r(t), in view of (1) and (2), has been identified with

r(t) = ∆
d
dt

logΦ(t). (9)

In finance, an established approach is to treat the returns r(t) as a stochastic process [21]. Returns are typicallymodeled by a
(generalized) Wiener process, i.e. assuming normal distributed random variables with a time dependent (random) variance

W (t) = E[r(t)2] − E[r(t)]2, (10)

where E[· · ·] indicates the stochastic expected value. Discretized versions of the time derivatives of the two terms are

d
dt

E[r(t)2] = 2E[r(t)r ′(t)] ≃ ⟨rj(rj+1 − rj−1)⟩∆−1 (11)

d
dt

E[r(t)]2 = 2E[r(t)]E[r ′(t)] ≃ ⟨rj⟩⟨rj+1 − rj−1⟩∆−1. (12)

On the right-hand sides, we have changed the notation for the expectation value from E[· · ·] to ⟨· · ·⟩, the latter indicating
the averages for lattice-generated returns. In the current simulation, standard stochastic financial modeling dictates that
⟨rj⟩ be independent of time. This implies that the discretized part of Eq. (12) is exactly equal to zero.

Therefore, the dynamics of the lattice model is driven by eliminating extreme, sudden, changes of the variance on the
returns deemed ‘unfit’ in the spirit of Ref. [9]. Combining (10) and (11), (12) the lattice version of the latter turns out to be

dW (t)
dt
≃ [cov(rj, rj+1)− cov(rj, rj−1)]∆−1, (13)

where cov(rα, rβ) = ⟨rαrβ⟩ − ⟨rα⟩⟨rβ⟩ is the covariance of the two random variables. Hence, extreme changes of the
covariance of returns between adjacent time slices are discouraged as part of the dynamics of the market model.

As a side remark we comment on the use of the two-step time derivative to approximate r ′(t) in (11) and (12) as
opposed to employing one-step forward (rj+1 − rj)∆−1, or backward (rj − rj−1)∆−1, discretizations. In both cases the
interaction (3), which drives the lattice dynamics, would mutate from a proper next-nearest-neighbor coupling to a term
dominated by self-interactions ∝ r2j . This does not lead to a sensible physical system, and demonstrably gives absurd
results in a numerical simulation. The corresponding approximations to the time derivative of the variance dW/dt are
≃[cov(rj+1, rj)− var(rj)]2∆−1 and≃[var(rj)− cov(rj, rj−1)]2∆−1, respectively. Those are variance driven and, equally, not
suitable to define market dynamics.

1 There is at least one, and almost always only one element in this set.
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Fig. 2. Updating evolution of the signal V versus the simulation time s. The signal at s = 0 is due to a random start of the lattice field configuration. (Its
value is=4.74.)

Additional insight may be gleaned from the commentary in Appendix B. There, an action-based classical point of view,
extracted from the update rules, sheds some light on the flow dynamics of the returns. Perhaps most importantly, that
discussion brings out the significance of the paradigm followed in this article: modeling a market far from equilibrium.

Finally, we should caution that the purpose of the above exposition is only to provide some motivation. In fact we
should expect that the returns time series has fractal geometry. This makes perfect sense on a discretized time lattice, with
the usual implications [22,23], but it certainly discourages using the concept of continuous time derivatives on everyday
manifestations of market data. In this vein the lattice model, in combination with next-nearest-neighbor interactions,
appears to be a rational approach.

3. Simulation

For good measure, we have chosen a lattice with n = 780 time steps. Starting with a random lattice field r we show in
Fig. 2 an example of the updating evolution of the signal V = max{|rj(rj+1− rj−1)| : j = 0 . . . n} versus the simulation ‘time’
s. Clearly visible is a significant drop of the lower envelope of V (s) as s approaches≈10,000. Beyond that the distribution of
signal dots appears to have stabilized at around≈20,000, at least this is the visual impression.

Following Ref. [10] we take a closer look at the envelope and define the ‘gap’ function

G(x) = min{V (s) : s ∈ N ∪ {0} and s ≤ x} with x ∈ R+ ∪ {0}, (14)

which is meant to trace the lower envelope of the signal. By construction, G(x) is a decreasing piecewise constant function
with discontinuities at certain discrete values xk, k ∈ N. Adding x0 = 0 and assuming an ordered sequence the length of
a plateau is Λk = xk − xk−1, and its height is G(xk−1). By definition, we say that an avalanche of length Λk starts at xk−1
and ends at xk. At s = xk−1 all lattice sites have local signals Vj ≤ G(xk−1), see (5). As long as the avalanche lasts, there is
at least one lattice site with a local signal larger than G(xk−1) and thus the updating activity continues until s = xk. Since
the gap function is decreasing and bounded from below by zero it will eventually approach a constant limx→∞ G(x) = GC .
In this regime the avalanche size diverges and the system has reached the desired state of criticality [10]. An example of
G(x) from our simulation is shown in Fig. 3. It corresponds to the data of Fig. 2 but up to much larger simulation times. The
evidence points to a critical value GC with 0 ≤ GC . 0.01. Note that GC = 0 is a possibility, we do not know if it is realized.
Unlike for the evolution model [10] no analytic results are available. Strictly speaking, the above narrative applies to the
thermodynamic limit, implying a lattice with infinitely many sites. Thus, in principle, we expect finite-size effects to afflict
our simulation. However, because subsequent results are very sensible we do not expect those to be an obstacle to practical
application of this model.

A signature feature of a critical system is scale invariance, implying power law behavior of certain quantities. Again
following Ref. [10], we display in Fig. 4 the frequency distribution of the avalanche sizes ∆N/∆Λ where ∆Λ is a binning
interval for the avalanche sizes and ∆N is the count of avalanches within that interval. We have used 10,000 bins with a
binning interval of ∆Λ = 1. The data points come from an ensemble average over 2000 independent lattice simulations
with 2× 106 update steps each. This allows one to calculate statistical errors, also displayed in Fig. 4. A power law behavior
is beyond doubt. A least-χ2 fit including data points in the interval 101

≤ Λ ≤ 102 gives∆N/∆Λ = 301Λ−1.39. Integrating
this gives a total number of N ≈ 780 avalanches out of a run with 2 × 106 updates. However, the integrated average N is
clearly less than the actual avalanche count per simulation due to the fact that the averaging operation gives rise to counts
less than unity, which is realistically unfeasible. An analysis over many simulations gives a more accurate count average
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Fig. 3. Plot of the gap function (14) of Fig. 2, but up to x = 2× 106 .

Fig. 4. Frequency distribution of avalanche sizes. The straight line corresponds to a power law fit.

where 780 ≤ N ≤ 1000 for a single run with 2-million updates. Hence long avalanches clearly are key to the updating
process.

In Fig. 5 we display the activity of the lattice sites during an updating sequence. By definition, H is the number of times a
lattice site j has been visited by an updating hit since the start of the simulation. Initially, with random rj assigned to the sites
the signal V tends to visit each site with comparable probability, leading to a flat activity plot. The plot in Fig. 5 reflects the
activity after 20,000 updates. A glance at Figs. 2 and 3, reveals that this corresponds to the onset of criticality. The peak-like
structures in the activity plot give evidence of the emergence of avalanches with larger sizes.

A closely related plot shown in Fig. 6 shows a zoom window on the simulation time dependence of the updated sites
around j ≈ 420 and s ≈ 106. Each dot in Fig. 6 indicates an updating event of site j at simulation time s. Disconnected sets
of dots clearly show the presence of avalanches. By visual inspection the curve is fractal in nature, a signature feature of
complexity. In the context of the evolution model [9] the term ‘punctuated equilibrium’ has been used to describe a similar
observation.

Finally, we have used an entropy-like quantity to monitor the approach of the field toward a complex state. Using the
exponentiated returns Rj = exp(rj) define

S =
1
n

n−
j=1

Rj log Rj. (15)

Then Fig. 7, in which is displayed S versus the simulation time s, shows that the initially random system becomes organized,
again at around s = 20,000. From then on the information content of the field has stabilized, as indicated by bounded
fluctuations of S between 10−1 and 10−2.
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Fig. 5. Plot of the activity across the lattice sites after 20,000 update steps. The appearance of peaks signals the emergence of avalanche dynamics.

Fig. 6. A zoom window on the updating evolution. Each dot at site j and simulation time s indicates an updating hit.

Fig. 7. Entropy S of the exponentiated returns Rj = exp(rj) as a function of the simulation times s.

4. Results

Asmentioned above, with our lattice geometry and size, it takes at least 20,000 updating hits to reach a critical state. The
lattice has n = 780 time intervals, and we use w = 1. To obtain the results discussed in this section we have used 4× 106

initial updates before collecting field configurations from independent simulations.
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Fig. 8. Lattice returns (gains) distribution. ∆c/∆r is the number of returns of size r at a binning interval of ∆r = 0.05.

Fig. 9. Historical NASDAQ returns (gains) distribution (open circles, H) compared to the results of the lattice simulation (filled circles, L). The dashed lines
are Gaussian fits to the center and the tails, respectively, of the lattice data.

4.1. Gains distribution

The advantage of working with a stochastic model is that observables can be estimated from ensembles, i.e. multiple
realizations of market time series. Thus we can take a look at the gains distribution, defined as the frequency plot of returns
against the size of the returns. The lattice data displayed in Fig. 8 are averages from 10,000 simulations, taking one sample
after 4× 106 updates each. The binning interval for the returns is ∆r = 0.05 and the number of counts per interval ∆c/∆r
is normalized such that the total number of counts is n = 780. Statistical errors are visible at the tails of the distribution. A
well-known feature of gains distributions is that they exhibit ‘fat tails’, meaning that for extreme values of r the distribution
is considerably enhanced over a normal (Gaussian) distribution. In Ref. [2], where we studied the effects of arbitrage using
a local gauge field, this feature was only obtained after analyzing the returns performing a weighted time average of past
returns. In the present model the fat tails distribution emerges naturally. Since the returns field develops into a critical state
the resulting scale invariance implies loss of memory of past holding patterns.

The same gains distribution is displayed in Fig. 9 along with historical market data from the NASDAQ index compiled
from minute data between 2005-Aug-26 and 2008-Aug-25 [24]. Scale factors as in ∆X = 2.4 × 10−3∆r and ∆N/∆X =
1.1×105∆c/∆r have been applied tomatch the historical data. The dashed lines correspond to Gaussian distributions fit to
the lattice data in the center (7 points) and the tails (2× 38 points), respectively. The Gaussian distribution is clearly ruled
out. We observe that the lattice model accounts remarkably well for the empirical gains distribution over many orders of
magnitude.

4.2. Time series

In Figs. 10–13we show four sets of sample time series from the lattice and selected historical data [24] from the NASDAQ
index. The latter are included to demonstrate that the lattice model has the ‘distinctive air’ of a real market. It goes without
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Fig. 10. Set 1: Lattice-generated times series of returns r , prices p, and volatility v are shown in the left column. The three panels on the right show selected
historical r, p, v times series from the NASDAQ index.

saying that a statistical model is at a loss predicting time series, nor can one expect that a single model will describe subtle
details of stochastic features of every market. What we are looking for has been very eloquently laid out in Ref. [22] by
Mandelbrot. In the Introduction we read: ‘‘It is worth noting that fully fleshed out and detailed pictures . . . put a heavy
premium on the ability of the eye to recognize patterns that existing analytic techniques were not designed to identify or
assess’’. It is in this spirit that Figs. 10–13 are presented.

The NASDAQ data from Ref. [24] are at minute intervals, which naively translates to ∆ = 60 s for the parameter
introduced at the beginning of Section 2. There are discontinuities by end-of-the-day and over-the-weekend interruptions in
the time series. Ignoring this, we have picked random time series of length n from the historical data. However, the situation
is more complicated. Assuming that the time series has fractal geometry, and thus is devoid of a scale, the choice of any ∆

would be equally valid. We are not in a position to pursue this issue here, but will rather live with the above naive choice,
adopting the scaling argument.

As for Figs. 10–13 the three panels on the left column display, top to bottom, for j = 1 . . . n the returns rj, the prices pj
and the volatility vj of returns derived from the latticemodel. While the returns come directly from the simulation, the price
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Fig. 11. Set 2: See caption of Fig. 10.

time series is obtained by integrating (9)

Φ(t) = Φ(t0) exp
[
1
∆

∫ t

t0
dt ′r(t ′)

]
. (16)

The discrete version of (16) is equivalent to rewriting (1) as a recursion

pj = pj−1 exp(rj) (17)

with pj = ΦjC and initial condition p0. Finally, the time series of the variance, or volatility in financial terms, is computed
from just three time slices through

vj =
1
3

j+1−
j′=j−1

(rj′ − r̄)2 with r̄ =
1
3

j+1−
j′=j−1

rj′ . (18)
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Fig. 12. Set 3: See caption of Fig. 10.

Note that ∆, p0 and C are all trivial parameters (units, etc.) in the sense that they have no effect on the simulation. The
same is true for the variance w used to draw random numbers, from p(x) ∝ exp(−x2/2w), while updating the lattice, see
(7). Since the signal (5) of the field configuration only involves a comparison (max) of returns the effect of changing w will
be a rescaling of the field. Specifically

w→ λw then rj →
√

λrj. (19)

Therefore, doing an entire simulation at only one fixed, arbitrary, choice for w is sufficient. In this sense the model has no
adjustable parameters. Observables then scale accordingly, for example vj → λvj. The price time series (17) behaves in a
less straightforward, though well defined, manner because the scaling factor appears with the argument of an exponential
function. The plots in Figs. 10–13 were consistently produced with w = 1, λ = 2 × 10−5, and p0 = 1950. The resulting
scales are similar to those of the historical NASDAQ data. Aside from lateral shifts of the price viewingwindows, comparable
scales in all panels of Figs. 10–13 are identical.
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Fig. 13. Set 4: See caption of Fig. 10.

The four data sets in Figs. 10–13 were chosen somewhat randomly, except that they were paired to point out common
features appearing in both the lattice and historical sets. For example, in Fig. 10 there is a clearly visible time interval
around j ≈ 330 where the historical returns data exhibits a region of quenched volatility. In financial market data the
phenomenon of volatility clustering is well known and even exploited as an industry standard modeling technique [21].
Periods of small/large volatility are often separated by price shocks that manifest themselves in large spikes of the volatility.
This is clearly a common feature of both the historical and the lattice data sets of Fig. 10, best visible in the v panels. The
price evolutions are similar, but this is accidental. The lattice model generates up or down markets with equal probability.
(Although this can easily be changed by modifying the updating algorithm.)

The remaining sets exhibit the same characteristics. In Set 2, Fig. 11, we have paired lattice and historical data that share
a small overall volatility. This demonstrates that the lattice model is capable of producing quiescent market periods as well.
The price times series look strikingly similar, which is fallacious, the statistical model is not capable of making predictions.
The subsequent Sets 3 and 4 provide additional evidence that the lattice model is able to emulate stylized featured of real
markets. Again, volatility clusters are clearly present separated by spikes of various sizes. Similarly, Set 4 exhibits fairly
active volatility patterns for both the lattice and the historical data.
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4.3. Financial market dynamics

We now turn to the ability of our model to capture some of the well-known dynamics observed in financial markets.
One of the most important characteristics of a financial time series is its volatility, and more importantly, how the volatility
evolves over time. Most financial time series exhibit time-varying volatility clustering, which means that periods of large
swings tend to be followed by periods of large swings, while periods of calm tend to be followed by periods of calm. These
dynamics can be modeled by the Auto Regressive Conditional Heteroskedasticity (ARCH) model of Engle [21] and by its
generalized version, the Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) model of Bollerslev [25].

The fact that these specifications imply that a large shock on average tends to be followed by another large shock means
that the resulting distribution of returns will exhibit ‘fat tails’ or higher-than-Gaussian probability masses in the extreme
regions. Similarly, the fact that these specifications also imply that a small shock on average tends to be followed by another
small shockmeans that the resulting distribution of returnswill exhibit a higher-than-Gaussian probabilitymass around the
origin, see Fig. 9. ARCH andGARCHmodels have grown into incredibly popular tools as they are able to replicate these salient
features of financial returns distributions, namelymore probabilitymass in the tails and around the center of the distribution
than in the benchmark Gaussian case. Capturing these features of financial markets is crucial for many purposes including
but not limited to: derivatives pricing, hedging, forecasting volatility, portfoliomanagement, regulatory issues, value-at-risk,
and so on.

The traditional ARCH specification expresses the current volatility level as a function of past squared shocks (about amean
or average return) at various lags. This implies that the volatility is not constant over time anymore but that it depends on
how large recent deviations (positive or negative) from the mean have been. In the more general GARCH specification, the
current volatility level is still a function of past squared shocks to the returns, but it is also a function of past lagged levels of
itself, thusmaking themodel evenmore flexible. The GARCH(p,q) specification for the volatility σ 2

t at time t can be described
by the following equation:

σ 2
t = α0 +

q−
i=1

αiϵ
2
t−i +

p−
i=1

βiσ
2
t−i (20)

where q and p are the maximum lags allowed by the model for past shocks and volatility levels respectively, and ϵt−i is the
return shock (about the mean) at lag i.

One can obviously allow q and p to be as large as one wants, but a GARCH(1,1) model in practice turns out to be
surprisingly flexible.Moreover, overfitting is often the recipe for poor out-of-sample performance, and parsimoniousmodels
often end up defeating more complex ones when tested outside of the in-sample period. Hansen and Lunde [26] compare
330 (G)ARCH-typemodels in terms of their ability to describe the conditional volatility of exchange rate and IBM return data,
and find no evidence that a GARCH(1,1) is outperformed bymore sophisticated models in the analysis. Therefore we choose
to focus on the parsimonious, yet very apt, GARCH(1,1) model for purposes of comparing the dynamics of time-varying
volatility in our lattice-generated returns and in NASDAQ historical returns. Our model can thus be written as

σ 2
t = α0 + α1ϵ

2
t−1 + β1σ

2
t−1. (21)

The goal here is twofold. First, it is to investigate whether our lattice model is able to produce returns volatility dynamics
displaying some form, if any, of ARCH/GARCH effects. Second, it is to examine whether our lattice model is able to produce
returns volatility dynamics that are rather consistentwith those of NASDAQhistorical returns. In Figs. 10 through 13, for each
set L and N (lattice and NASDAQ returns), we fit a GARCH(1,1) model onto the returns data through a Levenberg–Marquardt
optimization algorithm [27,28] and report the results in Tables 1 through 4.

Before getting to the tables, one may first notice that Figs. 10 through 13 display similar-looking sets of charts when
one compares the lattice-generated graphs with the NASDAQ historical ones. The top portion represents returns (gains or
losses) over time, and one can readily see that there are clusters of volatility in each, indicating that the model seems to be
capable of capturing them. The middle portion simply represents the evolution of the asset value over time. Visually, the
price dynamics generated by the lattice model appear ‘plausible’ as those of a financial market such as the NASDAQ. Finally,
the bottom plot represents the evolution of the volatility over time, for both the lattice and the NASDAQ data. Here again,
the volatility patterns generated by the lattice model seem credible as those of financial markets, displaying a variety of
spikes of various sizes and frequencies.

Tables 1 through 4 display the estimated parameters α0, α1 and β1, followed by their standard errors in parentheses and
their t-statistics, in square brackets, for both the lattice and the NASDAQ returns data. Except for the NASDAQ parameter α0
in Table 4, every parameter is statistically significant at the 5% significance level, and most parameters are even statistically
significant at the 1% significance level. This indicates that both theNASDAQ returns and our lattice-generated returns display
ARCH/GARCH behavior in volatility. Moreover, and more remarkably, the estimated parameters coming from our lattice-
generated returns are extremely close, especially in magnitude, to the estimated parameters coming from the NASDAQ
historical returns. For instance, in Table 2,α0,α1 andβ1 are estimated to be 4.14×10−9, 0.022450 and 0.966177 respectively
for the lattice-generated model, while they are 4.20×10−9, 0.031982 and 0.951740 respectively for the NASDAQ historical
returns. Although this does not indicate forecasting abilities on the part of the lattice model, it does show that it is able
to reproduce, with precision, important financial markets volatility dynamics and thus has the potential to provide future
insights on the inner mechanics of such markets.
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Table 1
GARCH fit parameters of Set 1, Fig. 10, for the lattice L and historical N data.

Set 1L Set 1N

α0 3.23E−08(1.01E−08)[3.214841] 1.11E−08(5.35E−09)[2.079218]
α1 0.043332(0.008898)[4.870008] 0.130702(0.019696)[6.636112]
β1 0.891148(0.028338)[31.44721] 0.859163(0.026981)[31.84381]

Table 2
GARCH fit parameters of Set 2, Fig. 11, for the lattice L and historical N data.

Set 2L Set 2N

α0 4.14E−09(1.61E−09)[2.564338] 4.20E−09(1.07E−09)[3.916649]
α1 0.022450(0.005070)[4.428308] 0.031982(0.007263)[4.403283]
β1 0.966177(0.007889)[122.4713] 0.951740(0.010025)[94.93278]

Table 3
GARCH fit parameters of Set 3, Fig. 12, for the lattice L and historical N data.

Set 3L Set 3N

α0 6.38E−09(1.46E−09)[4.360360] 5.87E−09(2.02E−09)[2.907091]
α1 0.015515(0.003301)[4.700237] 0.022312(0.008688)[2.568121]
β1 0.972397(0.004485)[216.8057] 0.956839(0.014609)[65.49589]

Table 4
GARCH fit parameters of Set 4, Fig. 13, for the lattice L and historical N data.

Set 4L Set 4N

α0 2.76E−08(5.42E−09)[5.092728] 3.73E−09(2.70E−09)[1.378933]
α1 0.045674(0.007692)[5.937874] 0.069064(0.005237)[13.18884]
β1 0.911153(0.013877)[65.65998] 0.936347(0.003615)[259.0275]

5. Summary and conclusion

By their very nature, historical market data constitute only instances of some stochastic process. It is thus desirable to
have available a stochastic model of a financial market. As a result, such a model grants complete access to the market’s
stochastic features through the act of drawing multiple instances, or ensembles. This allows the possibility of a detailed
investigation of market dynamics and the features that define them.

We have studied the properties of a stochastic lattice model which by design derives its features from next-nearest-
neighbor interactions of microscopic entities that live on a linear chain in discrete time. The model is realized as a lattice
field theory with field components being interpreted as market returns, and is subject to computer simulation with an
updating algorithm inspired by the evolution model by Bak et al. [7] that drives the lattice field into a self-organized critical
state.We present evidence, including power law behavior, that the critical state is indeed achieved. Its presence is the salient
feature of the model.

We compute time series of market returns, prices, volatilities, and returns frequency distributions, all of which are
remarkably consistent with historical market data for the NASDAQ stock index. In particular the ‘fat tails’ feature of the
returns distribution comes out effortlessly. It is worth noting that, aside from (trivial) units, the lattice model has no
adjustable parameters. However, if so desired, it is straightforward to modify the updating rules by introducing external
parameters. For example, asymmetry between up and down markets is easily produced. Perhaps most remarkable is the
observation that standard financial industry analysis tools, in our case the GARCH(1,1) model [25], produce fits that make
the lattice model time series almost indistinguishable from real financial market data.

It seems that themost important conclusion derived from our study is that self-organized criticality, being a fundamental
driving force for the model, is also key to characterizing real world financial markets. To say the least, self-organized
criticality should be an important component of intrinsic market dynamics, allowing us to model financial instruments
using lattice methods which may hopefully be competitive with current industry practice.

Of course, self-organization is surely not the onlymechanism that drives financial market dynamics. Among other things,
trading occurswithin a background of arbitrage opportunities [3].We are looking forward to combining past studies focused
on arbitrage [2] with the present model in order to develop an even more realistic stochastic market model.

Appendix A. The one-asset lattice gauge model

Using the notation of Ref. [2] we here consider the lattice gauge model with only one asset (m = 1). The illustration in
Fig. A.14 depicts the details. The vertical direction represents time, discretized by j ∈ N. The horizontal (space) direction has
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Fig. A.14. Elementary plaquette of the one-asset gauge model.

locations i = 0 indicating an interest bearing account (cash), and i = 1 being interpreted as an asset (stock). The gauge field
Θµ(x) ∈ R+ has components on vertical links, of which Θ0(0, j) are interpreted as interest rate factors and Θ0(1, j) as the
dynamical change of the asset values during one time increment j → j + 1. The horizontal link variables Θ1(0, j) are the
conversion factors between the units used in the account (units of cash) and those used for the asset (units of stock), at time
slices j. With this interpretation, which largely follows Ref. [3], the elementary plaquette

P01(0, j) = Θ1(0, j)Θ0(1, j)Θ−11 (0, j+ 1)Θ−10 (0, j) (A.1)

describes the relative gain (profit or loss) realized via an arbitrage transaction between the markets i = 0 and i = 1
(cash and stocks) involving slices j and j + 1. The plaquette Pµν(x) is invariant under a gauge transformation Θµ(x) →
g(x)Θµ(x)g−1(x+ eµ) where g(x) ∈ R+, but otherwise arbitrary.

In Ref. [3] this model is elucidated by choosing a gauge where Θ1(0, j) = 1, meaning that the same unit is used for
the cash and stock accounts. We now illustrate how this particular gauge maps the ladder geometry to the simple linear
geometry (Fig. 1) used in the current work.

For a given field configuration Θ define a gauge transformation g through

g(1, j) = g(0, j)Θ1(0, j), (A.2)

where g(0, j) ∈ R+ is arbitrary, for the time being. This leads to

Θ1(0, j)→ g(0, j)Θ1(0, j)g−1(1, j) = 1, (A.3)

thus arriving at the discussion in Ref. [3]. Going a step further, we fix g(0, j) recursively with respect to time

g(0, j+ 1) = g(0, j)Θ0(0, j)R−1, (A.4)

where g(0, 0) ∈ R+ is an arbitrary initial condition, hence

Θ0(0, j)→ g(0, j)Θ0(0, j)g−1(0, j+ 1) = R. (A.5)

The number R is a choice, R = 1 means that no interest is payed in the cash account.2 For given R and g(0, 0) the gauge
transformation is now completely determined by (A.4) and (A.2). The elementary plaquette is gauge invariant, it now reads

P01(0, j)→ P01(0, j) = g(1, j)Θ0(1, j)g−1(1, j+ 1)R−1. (A.6)

In this form the arbitrage gains live on a linear geometry along the asset time axis, i = 1, and can bemapped to the geometry
Fig. 1. In the light of (1) we thus identify

log P01(0, j)←→ rj+1 (A.7)

with the returns of the simple model.
The message of (A.7) is that it adds credence to our interpretation of the field components rj directly as returns. Within

the bounds of the gauge model rj are returns realized via arbitrage transactions.

Appendix B. Classical lattice action

In this appendix we try to helpwith finding intuition for the updating prescription laid out in Section 2. Technically, none
of this is used in the simulation.

In some sense, the updating rules (5)–(7) may be interpreted as an attempt to drive the absolute value of dW (t)/dt to
zero, see the discussion around (13). This is a hint thatW (t)may be viewed as giving rise to an action S, with δS = 0 leading

2 Of course R = R(j) could be chosen such that it is time dependent.
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to the classical (Euler–Lagrange) equations of motion. Specifically, given the lattice discretization, and ignoring boundary
conditions, the action is

S =
−

j

Wj. (B.1)

For a given field configuration, now approximate the variance Wj = ⟨r2j ⟩ − ⟨rj⟩
2 from the lattice field on just three time

slices

Wj ≃
1
3
(r2j−1 + r2j + r2j+1)−

1
9
(rj−1 + rj + rj+1)2 (B.2)

=
2
9
(r2j−1 + r2j + r2j+1 − rj−1rj − rjrj+1 − rj+1rj−1). (B.3)

The classical equation of motion comes from requiring that S is an extremum, thus calculate

∂S
∂rk
=

−
j

∂Wj

∂rk
=

2
9
(6rk − 2rk−1 − 2rk+1 − rk−2 − rk+2). (B.4)

This result can be expressed in terms of discrete derivatives. For r(t) define

ṙ(t) =
r(t +∆)− r(t −∆)

2∆
+ O(∆2) (B.5)

r̈(t) =
r(t +∆)+ r(t +∆)− 2r(t)

∆2
+ O(∆2), (B.6)

where the discretization error consistently is of order O(∆2). With this notation, rewrite (B.4) as

∂S
∂rk
= −

4
9
[∆2 r̈k +∆(ṙk+1 − ṙk−1)] = −

4
9
[∆2 r̈k + 2∆2 r̈k] = −

4∆2

3
r̈k. (B.7)

Hence

δS =
−
k

∂S
∂rk

δrk = 0 H⇒ r̈k = 0. (B.8)

As in Appendix A we may interpret rk as the returns realized from arbitrage transactions. Then, (B.8) informs us that the
flow dynamics of the returns are free of acceleration. In this simple classical sketch there are no forces on the returns.

We emphasize again that the above deliberations are only meant to help with intuition. The dynamics flowing out of
the above considerations are not used in the simulation. In fact, those are quite contrary to the spirit of this article, because
they would lead to an equilibrium system. In contrast, the rules of Section 2 result in a critical system far from equilibrium,
a quite different paradigm.
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