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a b s t r a c t

We report on initial studies of a quantum field theory defined on a latticewithmulti-ladder
geometry and the dilation group as a local gauge symmetry. The model is relevant in the
cross-disciplinary area of econophysics. A corresponding proposal by Ilinski aimed at gauge
modeling in non-equilibrium pricing is implemented in a numerical simulation. We arrive
at a probability distribution of relative gains which matches the high frequency historical
data of the NASDAQ stock exchange index.

Published by Elsevier B.V.

1. Introduction

The concept of a gauge theory revolves around the notion that the laws of physics must be independent of arbitrary
choices made by an observer, such as the scales (units) of length and time, or the choice of some coordinates in general.
Gauge invariance came into prominence in 1929 through thework ofWeyl [1] in a quest to understand gravitation. Since

then, it has evolved beyond its original context to also become a cornerstone of modern quantum field theory. The gauge
principle is realized in terms of a local symmetry group G which reflects some aspect of the physics. Famously, quantum
electrodynamics (QED) is locally gauge invariantwith respect toG = U(1), meaning that the choice of the complex phase for
matter fields is arbitrary. Indeed, our current understanding of particle physics as a unified theory of electroweak and strong
interactions, the so-called standard model, is built on a gauge principle combined with a specific pattern for (spontaneous)
symmetry breaking.
Methods of theoretical physics have found their way into financial mathematics and related fields of economics [2].

The term ‘‘econophysics’’ has been coined to describe this area of research [3]. A typical application is concerned with
stochastic properties of historical (market) data. This explains the connection to quantum physics, which is based on a
stochastic interpretation of physical phenomena. The marriage of financial mathematics with quantum physics has been
called quantum finance [4]. Quantization is best achieved using path integrals [5] because this guarantees viability even in
nonperturbative systems, like off-equilibriummarkets. Moreover, numerical simulation on some lattice geometry is readily
implemented.
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Fig. 1. Illustration of the geometry of the lattice model and the label scheme for the sites.

The idea of combining the gauge principle with quantum field theory in the context of econophysics has been advanced
by Ilinski [6]. Its rationale is that traders in financial markets, for example, interact in similar ways with the trading
environment, irrespective of the units used for the traded commodity. For example, market observables like the distribution
of relative gains to an investor should be similar regardless of whether the currency unit used in the exchange is USD, Euro,
Yen, or some other unit, provided that an appropriate scale factor has been applied. Empirical evidence related to this idea
comes from the observation of scaling of the market data with respect to different time horizons [7], yet another scale.
A somewhat independent path of using the concept of a gauge in stochastic investment models in mathematical finance

has been pursued by Smith and Speed [8] and Farinelli [9]. The concepts of differential geometry and stochasticmathematics
are combined in a rather formal way to yield interesting theoretical results. Comparing our and Ilinski’s [6] approaches
requires a translation of terminology: The terms ‘‘deflator and term structure’’ refer to ‘‘gauge fields’’, though in principle
the concepts are similar. We prefer Ilinski’s approach over Farinelli’s, in part because it more directly lends itself to practical
application.
The present paper is concerned with an implementation of those ideas in the framework of a numerical simulation of a

simple gauge invariant lattice quantum field theory. Subsequently, we will describe the lattice model, its interpretation in
the context of financial markets, and the numerical implementation, and then proceed to matching the results to historical
data of the NASDAQ stock index at one-minute intervals.

2. The lattice model

Inspired by Ref. [6] we work with a lattice geometry as illustrated in Fig. 1. In a three-dimensional rendering, the vertical
direction represents time with slices j = 0, 1, . . . , n separated by some arbitrary unit. At each time slice, we imagine a
horizontal plane in which there are space locations. A second index i = 0 labels the location of the origin and i = 1, . . . ,m
indicates (different) locations one step away from it. It is useful to divide the lattice sites into two sets

X0 = {(0, j)|j = 0, . . . , n} (1)
X1 = {(i, j)|i = 1, . . . ,m, j = 0, . . . , n}. (2)

The sites are connected through three sets of links. In the space direction (horizontal) we have

Ls = {(0, j)→ (i, j)|i = 1 . . .m, j = 0, . . . , n}, (3)

and in the time direction (vertical), we distinguish two sets of links

Lt0 = {(0, j− 1)→ (0, j)|j = 1, . . . , n} (4)

Lt1 = {(i, j− 1)→ (i, j)|i = 1, . . . ,m, j = 1, . . . , n}. (5)
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The lattice geometry may be visualized by imaginingm copies of a ladder, with n+ 1 rungs each, that have their left rails in
common, which then consists ofX0 ∪ Lt0. Note that sites on the right rails of different ladders are not connected by single
links. There are (n + 1)m horizontal (space) links and n(m + 1) vertical (time) links connecting a total of (n + 1)(m + 1)
sites.
It will be convenient to visualize the geometry defined above as being embedded in an infinite lattice of dimension

d = 1+m. There, we label the directions by µ = 0, 1, . . . ,m and define unit vectors eµ in terms of their components k by

(eµ)k = δµk where k = 0, 1, . . . ,m. (6)

Then, the sites (i, j) of our ladder geometry may be mapped into the sites x =
∑

µ xµeµ, where xµ ∈ Z, as

X0 3 (0, j)→ je0 (7)
X1 3 (i, j)→ je0 + ei. (8)

We populate the lattice with a matter field Φ , its conjugate Φ̄ , and a gauge field Θ . The matter fields live on the lattice
sitesX = X0 ∪X1 and assume values in the set of real positive numbers R+. The conjugate field is not independent ofΦ .
It is introduced for convenience of notation; we have

Φ(x), Φ̄(x) ∈ R+ with Φ̄(x) = 1/Φ(x). (9)

The gauge field is defined on the oriented links L = Ls ∪ Lt0 ∪ Lt1. We write Θµ(x) for a link variable, meaning that the
link originates at site x and terminates at site x+ eµ. The range is

Θµ(x) ∈ R+. (10)

The goal is to construct a locally gauge invariant theory based on the dilation group; i.e. the set of positive real numbers
with ordinary multiplication of the group elements

G = {g|g ∈ R+} with g1 ◦ g2 = g1g2. (11)

Under a local gauge transformation g(x) ∈ G the fields behave as

Φ(x)→ g(x)Φ(x) (12)

Φ̄(x)→ Φ̄(x)g−1(x) (13)

Θµ(x)→ g(x)Θµ(x)g−1(x+ eµ). (14)

The quantum field theory of our system will be governed by an action S[Θ,Φ, Φ̄], which is a functional constructed from
gauge invariant combinations of the fields. For gauge fields only, the most local (smallest) gauge invariant construct is the
so-called elementary plaquette

Pµν(x) = Θµ(x)Θν(x+ eµ)Θ−1µ (x+ eν)Θ−1ν (x), (15)

where ν = i > 0 and µ = 0 on our lattice geometry, as illustrated in Fig. 1. As a closed loop, it is invariant under a local
gauge transformation (14)

Pµν(x)→ Pµν(x). (16)

Other building blocks involve covariant derivatives of the matter fields. Possible choices are

D+µΦ(x) = Θµ(x)Φ(x+ eµ)− Φ(x) (17)

D−µΦ(x) = Θ−1µ (x− eµ)Φ(x− eµ)− Φ(x) (18)

D̄+µ Φ̄(x) = Φ̄(x+ eµ)Θ−1µ (x)− Φ̄(x) (19)

D̄−µ Φ̄(x) = Φ̄(x− eµ)Θµ(x− eµ)− Φ̄(x). (20)

It is straightforward to check that these transform under local gauge transformations (12)–(14) as

D±µΦ(x)→ g(x)D±µ (21)

D̄±µ Φ̄(x)→ D̄±µΦ(x)g
−1(x). (22)

Thus, the simplest (smallest) locally gauge invariant constructs are Φ̄(x)D±µΦ(x) and D̄
±
µ Φ̄(x)Φ(x). All of these contain terms

∝ Φ̄(x)Φ(x), which are gauge invariant. However, because of (9) these are constant and do not affect the dynamics of the
fields.1 Thus, dropping those terms, a locally gauge invariant action for the quantum field can be written as

S[Θ,Φ, Φ̄] = S0[Θ] + S1[Θ,Φ, Φ̄] (23)

1 In the case of a complex fieldΦ ∈ C this would be known as a mass term.
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Fig. 2. Arbitrage through an elementary plaquette.

with

S0[Θ] =
1
2

∑
x

∑
µ<ν

[Pµν(x)+ Pνµ(x)− 2] (24)

S1[Θ,Φ, Φ̄] =
∑
x

∑
µ

[d+µ Φ̄(x)Θµ(x)Φ(x+ eµ)+ d
−

µ Φ̄(x)Θ
−1
µ (x− eµ)Φ(x− eµ)+ d̄+µ Φ̄(x+ eµ)Θ

−1
µ (x)Φ(x)

+ d̄−µ Φ̄(x− eµ)Θµ(x− eµ)Φ(x)]. (25)

The coupling constants d±µ , d̄
±
µ ∈ R determine the interactions of matter and gauge fields. In (24) and (25) it is understood

that the summations comprise only sites and links contained in the lattice geometry described above; see Fig. 1.
We use the well-established formalism of lattice quantum field theory in Euclidean space-time to quantize the system;

see for example Ref. [10]. The fields Θ,Φ are taken to be random variables with a Boltzmann-like probability distribution
∝ exp(−βS)where β is a parameter. The corresponding partition function then is defined as the functional integral

Z(β) =
∫
[DΘ][DΦ]e−βS[Θ,Φ,Φ̄]. (26)

We defer a discussion of technical features to a later section, and continue with placing the model in a financial market
context.

3. Giving meaning to the fields

A gauge model based on the dilation group as a tool for pricing financial instruments was discussed extensively by
Ilinski [6]. The author draws an analogy to quantum electrodynamics, although a generic one, and even briefly touches
on a lattice version of the model. The geometry is ladder-like too; however, it differs slightly from the geometry used here
in the way the links connect to the lattice sites. Our version is well suited to numerical simulation.
We adopt the interpretation of the fields from Ref. [6]. In the labeling scheme of (1)–(5), and Fig. 1, space locations i are

associated with accounts held by an investor. The location i = 0 is special; it denotes a cash account maintained to manage
transactions. The field component Φ(0, j) is the balance of the cash account at time j. The unit of Φ(0, j) is that of some
arbitrary currency; USD for example. Locations i > 0 indicate holdings in investment instruments. The meaning of Φ(i, j)
is the account value of instrument i at time j. Again, the units are arbitrary. For example, one may think of the market value
of all shares held in the account. It is useful to refer to Fig. 2 for this discussion.
For i > 0, the sites (0, j) and (i, j) are joined by horizontal links∈ Ls. The corresponding gauge field componentsΘi(0, j)

are interpreted as conversion factors between the units used at locations i = 0 and those at i > 0. In the language of
differential geometry, the field is known as a connection. We say that Θi(0, j) performs a parallel transport of the matter
field at (i, j) so it can be compared to the matter field at (0, j) in like units. Thus, Θi(0, j)Φ(i, j) and Φ(0, j) have the same
units.
Gauge fields defined on vertical links ∈ Lt0 are interpreted as interest rate factors. For example, we may imagine that

i = 0 describes a money market account. A cash balance Φ(0, j) at time j will assume a value Φ(0, j + 1) at time j + 1. It
can be compared toΦ(0, j) only after parallel transport, namelyΘ0(0, j)Φ(0, j+ 1). In finance the latter quantity is known
as the discounted cash value. The link variable involves the interest rate.
Likewise, the gauge fields defined on vertical links ∈ Lt1 lend themselves, mutatis mutandis, to the same interpretation.

For i > 0 the value of instrument iwill change fromΦ(i, j) toΦ(i, j+ 1) driven by the market environment. A comparison
toΦ(i, j) can be made withΘ0(i, j)Φ(i, j+ 1), i.e. after parallel transport to the same time slice.
An investor holding a cash balance ofΦ(0, j) at time jmay wish to make a profit by utilizing an investment instrument.

The investor may buy shares in the instrument i > 0, wait for one time step and then sell it, depositing the cash amount
back into i = 0. The properly discounted cash value at time j then is

V1 = Θi(0, j)Θ0(i, j)Θ−1i (0, j+ 1)Φ(0, j+ 1). (27)
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If the cash balance had been kept in account i = 0, its discounted value at time jwould have been

V0 = Θ0(0, j)Φ(0, j+ 1). (28)

The relative gain (loss) of those two moves then is

V1/V0 = Φ̄(0, j+ 1)Θ−10 (0, j)Θi(0, j)Θ0(i, j)Θ
−1
i (0, j+ 1)Φ(0, j+ 1)

= Θi(0, j)Θ0(i, j)Θ−1i (0, j+ 1)Θ
−1
0 (0, j)

= Pµν(x), (29)

where in the last line we have indicated that the relative gain is equal to an elementary plaquette (15) withµ = i and ν = 0.
Such a profit opportunity is known as arbitrage. In the real world, those will quickly vanish because the market participants
will adjust prices. The gauge field model is designed to describe this situation [6], because the gauge field action S0[Θ] is
built from elementary plaquettes (24). The classical minimum is clearly realized at Pµν(x) = 1, for all µ, ν, x, which means
that there is no arbitrage opportunity at the classical level. However, for short periods of time, arbitrage opportunities do
exist, and this is reflected in the quantum nature of the model. Quantum fluctuations about the classical minimum do occur
with a probability given by (26). The sizes of these fluctuations are determined by the parameter β .

4. Numerical simulation

The expected value 〈O〉 of an operator O[Θ,Φ], depending on the fields, is given by the functional integral

〈O〉 = Z(β)−1
∫
[DΘ][DΦ]e−βS[Θ,Φ,Φ̄]O[Θ,Φ]. (30)

We shall later consider operators O which represent the distribution of gains for financial instruments.
A few comments could be helpful to clarify the connection between the choice of gauge and the integration variables

in (30). The path integral involves only gauge invariant quantities, specifically the Haar measure of the gauge group G, and
the action S. We shall consider only gauge invariant operators O. Henceforth, the expected value 〈O〉 is independent of
the choice of gauge. Since the fields live on a discrete finite lattice the path integral is also finite. We shall use a numerical
estimator to obtain (30). Then the role of the integration variables is assumed by performing an average over a (truncated)
Gibbs ensemble of field configurations. One could enforce a particular gauge condition at this point, but this is unnecessary.
The estimator of the expected value 〈O〉 is the same in any gauge.
The numerical simulation consists of computing a Gibbs ensemble of field configurations drawn from the probability

distribution ∝ e−βS[Θ,Φ,Φ̄]. More precisely, the ensemble is truncated to a finite set of configurations, rendering it an ap-
proximation.We take advantage of the tool set developed in the context of lattice quantum chromodynamics (LQCD), which
describes the physics of strong interactions (between quarks, gluons, hadrons, etc.); see for example Ref. [10]. Compared to
the LQCD case, our task is greatly simplified because thematter fields only take values in the set of real numbers, as opposed
to (anticommuting) Grassmann numbers, which cause serious numerical complications.
In practice, we start with an arbitrary (e.g. random) field configuration and then generate a Markov chain of equilibrium

configurations based on the Metropolis algorithm [11]. This yields a canonical ensemble of field configurations [Θ,Φ]k,
which we truncate, k = 1, . . . , K , and use to estimate expectation values, such as (30), as a configuration average.
Ourmethod of choice for numerically generating field configurations is the heat bath algorithm [10,12]. This is a standard

method in numerical simulation, so we only give a brief sketch pertaining to the current implementation. The algorithm
consists of locally updating the fields.
For a given gauge field link variableΘµ(x), the action (23) can be written as a sum S = ∆SΘ + S̄Θ , where∆SΘ contains

only terms that depend onΘµ(x), and S̄Θ is independent ofΘµ(x). It is easy to see that

∆SΘ = L̄ΘΘµ(x)+Θ−1µ (x)LΘ , (31)

where L̄Θ and LΘ are independent ofΘµ(x). These factors are made up from the gauge link staples connecting toΘµ(x), and
the matter fields at both ends ofΘµ(x). The Haar measure for the dilation group (11) is d ln g , g ∈ G. Thus, we conveniently
write

Θµ(x) = exp(θµ(x)), θµ(x) ∈ R, (32)

and observe that the probability density function for θµ(x) is

pΘ(θµ(x)) ∝ exp(−β(L̄Θ exp(θµ(x))+ exp(−θµ(x))LΘ)). (33)

Similarly, to update a given matter field componentΦ(x), the action (23) can be written as a sum S = ∆SΦ + S̄Φ , where
∆SΦ contains only terms that depend onΦ(x), and S̄Φ is independent ofΦ(x). Then

∆SΦ = L̄ΦΦ(x)+ Φ̄(x)LΦ, (34)



112 B. Dupoyet et al. / Physica A 389 (2010) 107–116

where L̄Φ and LΦ are independent of Φ(x). These factors are made up from gauge links and matter fields that are next
neighbors toΦ(x). Writing

Φ(x) = exp(φ(x)), Φ̄(x) = exp(−φ(x)), φ(x) ∈ R, (35)

we arrive at the probability density function for φ(x);

pΦ(φ(x)) ∝ exp(−β(L̄Φ exp(φ(x))+ exp(−φ(x))LΦ)). (36)

The coefficients L̄Θ , LΘ and L̄Φ, LΦ depend on the local environment of the field components considered for updating.
However, their detailed mathematical structure is such that the requirement

d̄+µ + d
−

µ > 0 and d̄−µ + d
+

µ > 0 (37)

for the coupling constants (see (25)) is a sufficient condition for L̄Θ , LΘ > 0 and L̄Φ, LΦ > 0. Hence, the local probability
density functions (33) and (36) are normalizable and bounded. In framework of the heat bath algorithm, we may then use
the accept–reject method to generate sampling values from pΘ and pΦ .

5. Observables and results

In keeping with the interpretation of the model put forward in Section 3 we consider the operators

W`(i, j) = Φ̄(i, j− `)
∏̀
k=1

Θ0(i, j− k)Φ(i, j). (38)

For an account i they describe the ratio of its values at times j and j−`. The product of link variables along the time direction
in (38) provides parallel transport, so the comparison is made in like units. The operators W`(i, j) are gauge invariant by
construction. It is convenient to define

Λ`(i, j) = logW`(i, j), (39)

which is interpreted as (the logarithm of) the relative profit made via the instrument in account i, at time j, after having held
it for a time interval of length `. In a quantum setting, the expectation values 〈Λ`(i, j)〉, and suchlike, are computed through
(30) via numerical estimation. An investor has made a profit if 〈Λ`(i, j)〉 > 0 and a loss otherwise. Those expectation values
fully account for quantum fluctuations or, in terms of the interpretation of the model, for the trading activity in the lattice
market model, including all possible arbitrage opportunities.
Under certain conditions the action (23) is invariant with respect to permutations of the asset accounts i = 1, . . . ,m.

This can be seen by inspection of (24) and (25) making the ladder geometry explicit. We have

S0 =
1
2

n−1∑
j=0

m∑
i=1

[Pi 0(0, j)+ P0 i(0, j)− 2] (40)

and, reproducing only the first line of (25) for simplicity,

S1 =
n∑
j=0

m∑
i=1

d+spaceΦ̄(0, j)Θi(0, j)Φ(i, j)+
n−1∑
j=0

m∑
i=1

d+timeΦ̄(i, j)Θ0(i, j)Φ(i, j+ 1)

+

n−1∑
j=0

d+axisΦ̄(0, j)Θ0(0, j)Φ(0, j+ 1) . . . .

The couplings d+µ have been replaced by common values labeled by subscripts according to the discussion around Fig. 1,
implying that those are independent of i. As this is our choice in the current work we arrive at permutation invariance with
regard to the asset accounts.
For a given holding time interval `, the time extent n of the lattice accommodates n− `+ 1 operators (38). Hence, for a

fixed `, we have availablem(n− `+ 1)measurements of 〈Λ`(i, j)〉. Writing

S` = {〈Λ`(i, j)〉 | 1 ≤ i ≤ m, ` ≤ j ≤ n} (41)

for these sets, where 1 ≤ ` ≤ n, we shall take their elements as instances of a stochastic variable and use it to estimate the
probability distribution of profits (losses) in the lattice model market.
We wish to compare the results of the simulation to historical market data. Towards this end, there are two more

considerations.
The first one is purely technical. Due to the finite time extent of the lattice, the size of the set S` shrinks with increasing

`. We avoid this undesirable `-dependence of the sample size by limiting the range of holding intervals to 1 ≤ ` ≤ `∞,
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where our choice is `∞ = bn/2c. Then we utilize only the terminal times slices j (see (38)) within `∞ ≤ j ≤ n. Thus, the
sets

S∞` = {〈Λ`(i, j)〉 | 1 ≤ i ≤ m, `∞ ≤ j ≤ n}, (42)

with 1 ≤ ` ≤ `∞, all have the same numberm(n− `∞ + 1) of elements.
Secondly, historical data are commonly available as prices P(t) at certain times t . Specifically, take those to be the average

price of all instruments traded at a certainmarket. Onemight be tempted to compare log[P(t)/P(t ′)] to our lattice generated
data. We argue that direct comparison is invalid because the instruments traded at times t and t ′ by various investors were
being held for varying amounts of time by the market participants. The (published) historical price P(t), being a cumulative
measure determined by the supply–demand situation in the market, does not resolve this effect. On the other hand, our
lattice data deliver price ratios at fixed holding time intervals `, in some unit. In the present form the action (23) of the
model does not dynamically generate the above effect. For the time being, to match the market situation, we consider the
stochastic variable

XL ∈
`∞⋃
`=1

w` ⊗ S∞` . (43)

The notation used in (43) means that random numbers are drawn from the sets S∞` with probability proportional to the
weightsw`. In practice, this can be accomplished by accordingly oversampling the lattice generated sets (42), for example.
The stochastic variable XL describes the distribution of the weighted average over gains realized at time j (the present) on
instruments i that were bought at various times in the past. A possible choice for the weights is

w` = `
−ν, (44)

where ν is a parameter. The specific mathematical form (44) of the weight factor has been chosen because a gauge theory is
devoid of a scale. The only function compatible with this is a power law. The case ν > 0 reflects a scenario in which fewer
investors hold financial instruments for longer periods of time.
The scaling behavior described by the power lawparameter in the context of ourmodel is unique. Similarmarket behavior

has been explored through the application of the fractional market hypothesis driven by quasi-rational traders [13]. With
respect to the latter model, the gauge theory structure is identical to that of Ref. [6], where the gauge theory of arbitrage is
strictly enforced in the classical sense. The resulting theoretical marketplace is analyzed through the eyes of quasi-rational
investors. The traders interact through a series of hopping elements which are dependent upon a decisionmatrix composed
of transition probabilities. These transition probabilities are a direct function of the predefined characteristic trading time of
the investor which they represent. In Ref. [13], the investment horizon is applied directly to the asset price, thus fixing the
characteristic time scale that the quasi-rational traders reflect upon. As a result of this application, the characteristic trading
time defines the interaction of the various investors with varying investment horizons.
This characteristic trading time bears a resemblance to our lattice parameter `. However, in the context of our model,

` represents investment horizons where the corresponding returns are extracted from the same market environment
(regardless of the choice made for the characteristic trading time). In our lattice model, ` does not contribute to the
asset–asset interactions. The interactions of our market are defined through the lattice parameters, which are executed
through the updating algorithm’s transition probability. This lattice interaction produces fixed asset prices, devoid of a scale,
which are derived from gauge invariant quantities. The investor holding time ` is enforced through these gauge invariant
constructs. The financial interpretation of the weight factor (44) applied to the investment horizon is similar to the scaling
methods in Ref. [13]. The mathematical structure and algorithmic implications differ greatly between the twomethods due
to the structure and application of the two different characteristic trading times. Hence, direct comparison of the power law
parameters’ numerical values is not straightforward.
A set of historical data may be considered instances of a stochastic variable. This is a standard approach in mathematical

finance [14]. We here consider

XH ∈ {log(P(t)/P(t ′))}, (45)

where the prices are from the NASDAQ index [15]. The sampling time interval τ = t − t ′ is one minute. We use data from
26 Aug. 2005 to 09 May 2007. The size of the set is 181523. A histogram of the variable XH for τ = 1 min is shown in Fig. 3.
There are 59 bins of width∆XH = 2.034× 10−4.
The numerical simulation has been done on a lattice with n = 260 time steps andm = 30 assets at β = 4.0 (see (26) and

(30)), with 600 field configurations. The coupling constants in (25) are all equal, with d±µ = d̄
±
µ = 0.25. All these parameters

were ad hoc choices; no particular effort to tune them has been made.
The histogram in Fig. 3 displays the number of counts∆N in each bin divided by the binwidth∆X . These approximate an

unnormalized probability density function p(X).Wedistinguish between the historical and the lattice resultswith subscripts
H and L, and write

dNH
dXH
= pH(XH) and

dNL
dXL
= pL(XL) (46)
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Fig. 3. Comparison of the relative gains distributions ∆N/∆X of the NASDAQ index of one-minute-interval historical data (H open circles) (45), and the
corresponding results of the lattice simulation (L, filled circles) (43). The error bars are the standard deviations derived from 600 lattice configurations. The
dashed line represents a fit to the lattice data with a Gaussian (normal) distribution.

for the respective distributions of XH and XL; see (45) and (43). Comparison of the distributions, pH ∼ pL, proceeds by
applying appropriate scale factors to the lattice generated data. Hence, writing

XH = λXL (47)

we aim at

pH(XH) ' µ pL(XL), (48)

provided appropriate values for λ and µ can be found. We expect λ to depend on the lattice parameters, including β , and
µ is just a normalization constant. The lattice model results are compared to the historical data in Fig. 3. A good match is
obtained with λ = 6.0× 10−4 and ν = 2.01 for the power law parameter in (44).
At this time it is important to point out that the two distributions are computed in slightly different ways. The lattice

generated distribution displays returns calculated for varying holding period lengths, with the weights a function of the
amount of time for which the assets are held by the various investors. The NASDAQ generated distribution displays returns
calculated as the ratio of index prices collected at the one-minute frequency, where the prices reflect supply and demand
interactions resulting from investors holding assets for varying lengths of time. However, a good match is nevertheless
obtained through the fitting of theλ parameter that scales themagnitude of the lattice-driven returns and of the ν parameter
that drives the implied average length of time for which assets are held by investors.
Remarkably, the agreement of the latticemodel with historical data is valid through about four orders of magnitude. This

is a considerable improvement over the original work by Mantegna and Stanley [7]. These authors matched high frequency
historical data over less than two orders of magnitude by invoking a (truncated) stable Lévy flight probability distribution.
The latter is not based on first principles though; in fact, it is an ad hoc assumption.
The dashed line in Fig. 3 represents a fit with a normal (Gaussian) distribution matched to data points in all bins of

the lattice data. Equal normalization has been imposed as a constraint. Clearly both the historical and the lattice data
are distinctly larger than the normal distribution. This observation has been referred to as fat tails [7]. These tails have
consequences for certain results of financial modeling [16]. We observe that the present analysis reproduces fat tails with
ease. It should be duly noted that the power law parameter ν determines the extent and steepness of the tails. We interpret
this as saying that the presence of fat tails is amanifestation of the fact that investors hold their assets for varying amounts of
time `, with the instantaneous price being some combination of prices. This could be considered a novel insight into financial
market dynamics. The historical data prove to be remarkably consistent with the lattice simulation, and the holding time
modeling. This suggests that the gauge principle is in fact realized, to some degree of approximation, in real world financial
market dynamics.
It is worth pointing out that one can also obtain a probability distribution curve displaying a certain amount of kurtosis

(fat tails) with an exogenous specification of asset returns. Models allowing for stochastic volatility and/or jumps in the
asset price are also able to produce fat tails and skewness in the distribution of the generated returns, as shown for
instance in Bakshi et al. [17], among many others. The intuition in the case of stochastic volatility is that if the volatility
is allowed to increase or decrease for a while, this will result in a larger-than-in-the-Gaussian-case probability mass in
the tails and around the origin of the distribution (a phenomenon observed in most financial time series). Moreover, by
allowing the stochastic volatility shocks to be negatively correlated with the asset returns shocks, one can fine-tune the
level of skewness in the distribution of returns in addition to modeling the leverage effect whereby the financial market’s
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Fig. 4. Relative (unscaled) gains distributions ∆N/∆X of the lattice simulation (43) for varying values of β . Error bars are omitted for clarity; they are
similar to those in Fig. 3.

volatility is often empirically observed to go up after a decline in the asset price. The intuition in the case of jumps is even
more straightforward, since enabling the asset returns or prices to jump up or down independently of their otherwise
Gaussian distribution will place one more often in the tails of the resulting probability curve. Alternatively, one can also
embed ARCH/GARCH effects (Autoregressive Conditional Heteroskedasticity and Generalized Autoregressive Conditional
Heteroskedasticity, respectively) in the very specification of the return-generating process [18]. Such specifications would
imply, on average, that a large shock tends to be followed by a large shock, thus explaining the fat tails. Similarly, a small
shock tends to be followed by a small shock, explaining the higher-than-Gaussian probability mass around the origin.
However, all these models are exogenously specified, precisely engineered to yield returns distributions consistent with
empirically observed ones. Our model, on the other hand, is a microscopic one relying solely on the principle of gauge
invariance but is nevertheless able to deliver comparable results andmatch a high frequency distribution of market returns,
without having pre-planted seeds of kurtosis into the model as in the case of stochastic volatility, jumps, and ARCH/GARCH
setups.
The significance of the gaugemodel parameters with respect to financial observables warrants further discussion. This is

a large area of unexplored territory to be addressed in future work. However, we here briefly explore the effect of changing
the parameter β which defines the level of quantum fluctuations (arbitrage opportunities) present within the simulation.
Fig. 4 displays the unscaled returns distribution for varying values of β where all other parameters are identical to that of
Fig. 3. It is apparent that β characterizes the amount of returns that fall into the Gaussian regime, thus defining the quantity
of the returns that contribute to the distributions’ fat tails. Aside from rescaling, Fig. 4 demonstrates the stability of the
distribution’s characteristic shape with respect to varying β .

6. Outlook

The idea of scale invariance playing an important role in financial market dynamics has, of course, a long history [7].
An interesting heuristic approach is based on the assumption that the underlying dynamics will produce a self-organized
critical system, which is well known to exhibit scale invariance [19]. An empirical analysis of historical data, using wavelet
filtering to eliminate Gaussian noise, appears to confirm this hypothesis [20]. In the same vein, but somewhat closer to a
microscopic description, scale-free network models [21] have been employed [22]. Here, the topology of link connections
between traders is constructed to obey a certain power law from the outset. Our lattice study is remotely related to those
ideas in the sense that self-organization could eventually be realized in modified versions of the lattice model.
Another known characteristic of market returns is the notion of volatility clusters, i.e. the fact that volatility may be high

for some period of time and later remain low for some other period of time. One way to model and test this phenomenon
is through the use of an ARCH model, developed by Engle [18]. In this model, the mean-corrected asset return rt is serially
uncorrelated but there is dependence through a quadratic function of its lagged values. A typical ARCH(m)modelwill assume
that rt = σtεt and σ 2t = α0+α1r

2
t−1+α2r

2
t−2+· · ·+αmr

2
t−mwithα0 > 0, andαi ≥ 0 for i > 0, andwhere εt is independently

and identically normally distributed with a mean of 0 and a variance of 1. Under this setup, large past shocks imply a large
conditional variance for the next mean-corrected return. Interestingly, the empirical analysis of Ref. [20] seems to hint at
such a scenario.
We are looking forward to investigating market characteristics from a microscopic point of view with future versions of

the lattice gauge model. For example, features that we plan to study in the future involve correlations of assets over time,
and the volatilities of these assets both in a stand-alone framework and in the context of a portfolio where several assets
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are pooled and interact. However, this will require the breaking of the time invariance principle currently in effect in our
model, and will thus be a major undertaking.
Another area of investigation could be the phase structure of the lattice fields. In particular, the action could be modified

to include larger, gauge invariant, building blocks such as loops and links extending over more than one (temporal) step.

7. Conclusion

We have implemented a proposal by Ilinski, that financial market dynamics should be independent of their arbitrary
units used for cash and assets, thus being describable using a local gauge theory which, in some sense, resembles quantum
electrodynamics. The model relies on the dilation group R+ as a local gauge symmetry on a lattice multi-ladder geometry
of dimension m + 1, where m is the number of investment instruments coupled to a cash account, and the remaining
degree of freedom represents the time evolution of the system. The numerical simulation of themodel yields the probability
distribution of a stochastic variable which represents the market average of relative gains of investments. It is matched
to high frequency historical data of the NASDAQ index and found to reproduce these over four orders of magnitude; in
particular, the empirical observation of fat tails, meaning those that exceed a normal distribution, is reproduced. In this
model, the microscopic reason for this observation is traced back to the fact that a spot price of an asset is a result of the
investing history: The assets offered at a particular time have been held for various amounts of time.
We side with Ilinski [6] that the gauge principle is a very important feature of market dynamics, though it may not be the

only one. In particular, terms correcting the lattice action,which break gauge invariance (one hopes, perturbatively), could be
added to the model. These terms may account for inflation rates, dividend growth, and the like. Also, one could implement
boundary conditions on the lattice model, for example the historical Federal Reserve interest rate, or the time history of
specific company stock values. This is a particularly interesting avenue because of the potential of making predictions of
future gains distributions. Of course, future prices cannot bepredicted, but the time evolution of their probability distribution
can be, at least in the short term.
We close with the remark that the present model is only an, initial, exploratory attempt. No exploration of the lattice

features with regard to the parameters has been made. This would include the search for phase transitions, or spontaneous
symmetry breaking, for example. We shall leave this to future work.
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