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Abstract 
 

Based on several research studies and in particular the theoretical study of 
Prakash, de Boyrie, Hamid and Smyser (1997), it is known that the variance as well 
as the skewness of the probability distribution of rates of return increases if the 
investors’ investment interval increases. In the present study, using the portfolio 
selection procedure developed by Lai (1991) under the presence of skewness and 
subsequently used by Chunhachinda, Dandapani, Hamid and Prakash (1997) and 
Prakash, Chang and Pactwa (2003), we find that the selection of investment interval 
(e.g. daily, weekly vs. monthly) significantly changes not only the optimal allocation 
of weights, but also the number of markets selected in the portfolio. 

JEL Classification:  G11, G15 
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Effect of intervalling and skewness on portfolio selection in developed and 
developing markets 

1.  Introduction 

 The present study, in large part, is inspired by the abundance of studies that 

have appeared lately on skewness and intervalling in the literature.  For example 

Harris, Kucukozmen, and Yilmaz (2004) show that a recently introduced probability 

distribution known as “skewed generalized t (SGT) distribution, a distribution that 

allows wide range of skewness and kurtosis….. offers a substantial improvement in 

the fit of both GARCH and EGARCH models” 1.   Sengupta (2003), using a variety 

of efficiency tests, also finds that the presence of skewness in the rates of return of 

mutual funds based on new technology significantly affects their performance.  

Furthermore,  Parhizgari, Dandapani and Prakash (1993) and Josey, Brooks and Faff 

(2001) offer empirical evidence that the choice of intervalling in datasets (e.g., daily 

versus weekly versus monthly, etc.) does affect the various return generating (such 

as linear and quadratic) and asset pricing (such as  arbitrage pricing theory) models.  

Even though there exist several studies on portfolio choice under skewness (see for 

example, Chunhachinda, Dandapani, Hamid and Prakash, 1997 and Prakash, Chang 

and Pactwa, 2003), to the best of our knowledge no study specifically addresses the 

effect of intervalling as well as the effect of skewness on the portfolio choice 

problem simultaneously, along with a large worldwide data set.  In view of this, we 

reexamine the effect of intervalling in portfolio selection in the presence of 

preference for positive skewness by the investor.  Although we employ the same 

procedure for portfolio selection under skewness preference as in Lai (1991), 

Chunhachinda, Dandapani, Hamid and Prakash (1997), and Prakash, Chang and 

Pactwa (2003), this paper defers markedly from the above cited studies in the sense 
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that we exclusively address the question of the effect of investment interval selection 

on the allocation of optimal weights to individual assets in a portfolio recognizing 

the preference for positive skewness.  Following Parhizgari, Dandapani and Prakash 

(1993), we use the phrases “investment horizon problem”, “holding period problem” 

and “intervalling effect” interchangeably.  As Parhizgari et al. (1993) note: 

“The finance literature is relatively rich in its coverage of the effect of the investment horizon on 
performance measure.  This effect has been named alternatively: the intervalling effect, the investment 
horizon problem, and the holding period problem.  Stated simply, the problem is that estimates of the 
various measures of beta and the performance indices using a given data set could be ‘interval’ 
independent.  The interval is basically the time mode of the data set, e.g. daily, weekly, monthly, 
quarterly, annually, etc.  Several researchers, most notably Levhari and Levi (1977), Ang and Chua 
(1979), and Levy (1981) have shown that in testing the performance measures of the security or 
portfolio using CAPM, the arbitrarily chosen investment horizon affects the resultant estimates.  The 
performance index as measured by the reward to variability ratio increases with the investment horizon 
for all stocks and in the market model the estimate of systematic risk increases with the investment 
horizon for aggressive stocks and decreases for defensive stocks.  Hence it is theorized that most of the 
empirical studies evaluating performance contain a mathematical bias in measuring systematic risk.  
This bias is attributed to the choice of the investment horizon.” 

 

 It is evident from the above quote and references cited therein that the 

various statistical measures that form the backbone of the financial decision making 

process are affected by the choice of investment interval, such as daily versus weekly 

versus monthly, etc2.   Many research studies have appeared in the literature that 

discuss the effect of intervalling on various statistical measures, such as beta, 

variance, skewness, Sharpe’s performance index, etc. (see for example Smith, 1978; 

Hawawini, 1980a, 1980b; Levy, 1972; Lee and Leuthold, 1983; Handa, Kothari and 

Wasley, 1993; Parhizgari, Dandapani and Prakash, 1993; Martinkainen, Pertunnen, 

Yli-Olli and Gunasekaren, 1994; etc).  However, we are aware of only Prakash, de 

Boyrie, Hamid, and Smyser (1997, PDHS hereafter) who provide a purely theoretical 

discourse on the effect of intervalling on variance and skewness.  Furthermore,  the 

list of seminal research studies that have appeared in the literature using variance as 

well as preference for positive skewness in the portfolio allocation are Meric and 

Meric (1989), Lai (1991), Chunhachinda et al. (1997) and Prakash et al. (2003).  

However, to the best of our knowledge, no research has appeared in the literature 
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that deals with the intervalling effect and utilizes variance combined with preference 

for positive skewness in the rates of return.  The motivation for this research comes 

from the fact that if the choice of investment interval affects the variance and 

skewness, it then seems intuitive that it will also affect the allocation of optimal 

weights for the assets in the portfolio.  In this paper, we make an attempt to integrate 

the intervalling effect on the portfolio selection problem.  Note that we refrain from 

reviewing the literature and the empirical methodology in detail since it can be found 

in Chunahachinda et al. (1997) and Prakash et al. (2003). 

  Using market index data from 37 developed and developing countries, we 

apply the goal programming techniques of Lai (1991) to obtain the optimal portfolio 

allocation for daily, weekly and monthly investment intervals.  We find that both the 

allocation of weights and the selection of markets significantly affect the optimal 

portfolios’ composition.   

To maintain continuity, the theoretical development of the intervalling effect 

in PDHS (1997) is briefly discussed in section 2.  Section 3 describes the data used 

in our empirical analysis.  The empirical verification of the intervalling effect on 

variance and skewness of returns is conducted in Section 4.  In section 5, we present 

a brief description of the multi-objective goal programming model, originally 

developed by Lai (1991), and go on to describe the empirical results obtained using 

the multi-object goal programming.  The paper concludes with some remarks in 

section 6. 
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2.  The intervalling effect on the variance and skewness of return distributions3  

PDHS (1997) define the one period rate of return during the interval (j-1) to j 

as 

1
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 (a random variable) is the expected price to prevail in time period j, and 

1−jP  (a non-random number) the price in period j-1.  The wealth ratio is then given 

by 
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PDHS (1997) examine the theoretical distribution of jR
~

 under the stochastic 

proportionate effect jump process where the jump process is defined thus 

“Let the initial value of the price be 0P  and through a jump process a value jP  is 

attained at the jth jump. Let TP  be the final value at the Tth jump where the process 

terminates4.  Assuming that at the jth step (j=1,2,…….,T) the random change in the 
variable is a random proportion of the most immediate attained value, i.e. 
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where jr~ ’s are mutually independent for all j except when 1)( 1 =−jPφ .  In this paper 

our interest is in the distribution of (1) which is a special case of (3) 

when 11)( −− = jj PPφ . Imposing the condition 11)( −− = jj PPφ , the process defined 

by (3) becomes 
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 denotes the holding period (from 0 to T) wealth ratio.” 
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PDHS (1997) then obtain the probability distribution of TR0

~
ln . Note that the 

difference between superscript and subscript defines the length of the interval.  

Using the Gnedenko (1962) form of the Law of Large Numbers they show that, since ∑
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22 σξ , where µj, and σj are the mean and standard deviation of 

rj, respectively, with the following values for mean, variance and skewness of the 

lognormal distribution:  

  Mean: )2exp( 2ξθ +=M  

Variance: )1)(exp2exp( 22 −+= ξξθV  

Skewness: 2/122/32 )1(exp3)1(exp −+−= ξξSK  

 After deriving the above statistical measures they argue that 

“ ……the skewness and the variance of the distribution depends on the parameter 
2ξ  and since 

2ξ >0 

and 0)1(exp 2 >−ξ , the larger the value of 
2ξ , the larger will be the variance and skewness. 
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where the difference between the superscript and the subscript denotes the holding period. 
Similarly the same inequality as obtained for variance will be maintained for skewness expressed as: 
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 From the above discussion it is obvious that the choice of interval will affect 

the values of the variance and skewness. 
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3.  The data 

We collect daily, weekly, and monthly data on international indices from 

Datastream from July 1st 1993 to May 30th, 2005, from 37 countries spanning over 

the five continents.  The price series for each country index are subsequently 

converted to return series.  The countries included in this study are: 

Developed countries: 

Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, 

Netherlands, Norway, Spain, Sweden, Switzerland, UK, Australia, Canada, New 

Zealand, US, Japan, Singapore, and Hong Kong. 

Developing countries: 

China, Indonesia, Korea, Malaysia, Philippines, Taiwan, Thailand, Argentina, Brazil, 

Chile, Mexico, Venezuela, Portugal, Turkey, and Poland. 

 Thus there are 22 developed and 15 developing countries in this study.  

Summary statistics of our data sample can be found in Table 1. 

 

4. The empirical verification of the intervalling effect on variance and skewness 

 According to expressions (9) and (10), the variance and skewness for the 

returns should increase as the investment interval increases.  In fact this is exactly, 

what Fisher and Lorie (1970) reported a long time ago (see their Table 3 pages 106 

and 107, column 17). It is clear from their table that inequality (9) is satisfied for all 

intervals considered except in one case.  Furthermore, inequality (10) is satisfied in 

almost all cases except for one ten-year period over five-year period.  Thus, Fisher 

and Lorie’s finding confirm the Prakash, de Boyrie, Hamid and Smyser (1997) 
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theoretical derivation.  Furthermore, Chunhachinda et al. (1997) Table 1 shows that 

all the variances of weekly rates of return for 14 international capital markets over a 

period of January 1988 to December 1993 are less than their monthly counterparts.  

Similarly, the weekly skewness is less than their monthly counterparts in all cases 

except one6.   Prakash et al. (2003) also report the standard deviations and 

skewnesses for (nominally) annualized weekly and monthly returns.  At first glance, 

the standard deviations seem to be just the opposite of the theoretically predicted 

values.  However, if we convert the annualized weekly and annualized monthly 

standard deviations to the standard deviations of actual interval returns, their findings 

are completely consistent with the findings of Fisher and Lorie (1970), and 

Chunhachinda et al. (1997)7.   However, unlike Fisher and Lorie (1970) and 

Chunhachinda et al. (1997), this study provides no clear cut evidence whether 

skewness increases with an increase in the investment interval.8.   

Our empirical results are consistent with the findings of Prakash et al. (2003), as 

can be seen in Table 1.   

[Insert Table 1 here] 

It is clear from Table 1 that for periodic returns the computed values of daily 

variances for all 37 capital markets of the world are less than their weekly monthly 

counterparts and in turn less than their monthly counterparts.  However, the evidence 

is not as conclusive for the skewness.  The conflicting findings of Prakash et al. 

(2003) and the present study are not surprising.  The datasets used in the present and 

Prakash et al. (2003) studies are overlapping.  Prakash et al. (2003) used data from 

July 1993 through December 2000 whereas we use data from July 1993 to May 

2005.  The data used by Fisher and Lorie were for pre-1970 periods whereas 

Chunhachinda et al. (1997) used data from January 1988 to December 1993.  At the 
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present time, we do not have a good explanation for the discrepancies observed in 

these findings.  

 

5.   Solving the multi-objective portfolio problem and empirical results 

 Our multi-objective portfolio problem is the same as in Prakash, Chang and 

Pactwa (2003).  That is, we essentially solve the multi-objective (polynomial) goal 

programming problem: 

 b
pMVp

a
pMVpw

wswswkwk )}()({)}()({min −+−  

                               s.t. 0≥w , w′1 = 1 and 1)( =wv p  

where  1 is the unit vector, an (n x 1) vector; 

 w is the portfolio weights, an (n x 1) vector; 

 )(wk p  is the expected excess return on portfolio; 

 )(wv p  is the variance of portfolio; 

 )(ws p  is the third central moment of distribution of portfolio returns; 

 MVw  solves maxw )(wk p  s.t. 0≥w and 1)( =wv p , the solution to the mean–

variance efficient portfolio; and 

SVw  solves maxw )(ws p , s.t., 0≥w and 1)( =wv p , the solution to the 

skewness–variance efficient portfolio; 

),( bawPGP  is the solution to polynomial goal programming problem, where a 

and b are parameters in the objective function. 

 

    Selection of integer values for a and b will determine the portfolio selection 

choice. For example, if we select a = 1 and b = 0, it will represent the mean-variance 
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efficient portfolio. Similarly choosing a = 1 and b = 1 will depict the selection of the 

mean-variance-skewness portfolio. 

Using the procedure described above, we obtain the optimal portfolio 

allocation for the 22 developed and 15 developing countries’ market indices, a total 

of 37 markets. 

 

5.1  Portfolio allocation among developed markets 

In Table 2, we provide the optimal portfolio allocation among the developed 

markets for the rates of return.  Furthermore, the table also contains the weight 

allocation for daily, weekly, as well as monthly returns for different values of 

parameters a and b9.  Even though all the tables provide the allocation for various 

values of parameters a and b, our main concern is when a = 1, b = 0 (mean-variance 

portfolio allocation) and when a = 1, b = 1 (mean-variance-skewness portfolio 

allocation)10.  In Table 2, we provide the portfolio allocation for daily (panel 1),  

weekly (panel 2) and monthly (panel 3) returns.  Under the mean-variance 

framework (a = 1, b = 0) in developed markets, the optimal portfolio allocations for 

daily returns are fairly evenly distributed among all 22 developed markets in the 

sample, with the highest allocation to Finland (8.31%) and the lowest allocation to 

US (2.60%).  In the case of weekly returns, the portfolio allocations are spread over 

16 countries with Finland (12.61%) receiving the highest allocation followed by 

Demark (12.07%).  But in the monthly returns case, the allocation happens only in 9 

out of 22 developed markets with Denmark receiving the highest weight (35.90%), 

followed by US (24.05%).  Thus, it is obvious that the selection of investment 

interval does have a large impact on the allocation weights among the different 

markets.   
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[Insert table 2 here] 

In the mean-variance-skewness preference (a = 1, b = 1) case, the number of 

markets in which it is optimal to invest is not even the same as the number of 

markets in the mean-variance portfolio allocation problem (for weekly returns, five, 

and for monthly returns, three).   The countries that are selected for weekly returns 

are Belgium (4.47%), Finland (5.66%), Italy (47.87%), Switzerland (25.96%) and 

Hong Kong (16.05%), whereas the allocation weights for monthly returns are 

Austria (2.87%), Switzerland (40.97%) and Hong Kong (56.15%).  Thus, it is 

obvious that the choice of investment interval drastically changes not only the 

optimal weights but the markets as well.  For example, Switzerland and Hong Kong 

appear in both the monthly and the weekly returns cases, albeit with drastically 

different allocations (25.96% and 16.05% versus 40.97% and 56.15%, respectively). 

 

 5.2  Portfolio allocation among developing markets 

The weight allocations for assets in the developing markets follow essentially 

the same pattern witnessed earlier.  For example, for pure mean-variance preference 

(a = 1, b = 0), the allocation in the daily return case covers all 15 markets in the 

sample, with the highest percentage going to Indonesia (10.10%) and the lowest to 

Portugal.  However, in the weekly returns case the allocation is spread among eight 

(namely, China, Korea, Brazil, Chile, Mexico, Portugal, Turkey and Poland) out of 

15 countries while the allocation in the monthly returns case is distributed among 

seven countries.  Furthermore, unlike the case of developing countries where weekly 

returns yielded different countries than monthly returns did, no such pattern is 

observed in the mean-variance framework.  Chile is the only country that fails to 

receive any allocation when using monthly returns, having received a mere 0.53% 
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allocation when using weekly returns.  In seems that the increase in investment 

horizon reduces the number of markets included in the optimal portfolio under the 

mean-variance framework. 

[Insert table 3 here] 

In the mean-variance-skewness framework (a = 1, b = 1), the optimal 

portfolio in the daily return case comprises only one market, that is, Philippines 

receives 100% of the funds allocation.  However, when weekly returns are used, the 

funds are allocated to seven countries (China, 80.51%, Malaysia, 0.97%, Brazil, 

2.89%, Chile, 3.21%, Mexico, 3.34%, Portugal, 7.92% and Poland, 1.15%) whereas 

for monthly returns the mean-variance-skewness portfolio selected consists of China 

(90.29%), Philippines (1.70%), Thailand (2.78%) and Brazil (5.23%).  Thus, unlike 

the pure mean-variance setting, the countries selected when using daily returns are 

vastly different from the ones selected when using weekly or monthly returns.  This 

finding is contrary to the findings for mean-variance preference portfolio where 

many countries were selected for all three rates of returns. 

 

5.3 Portfolio allocation among developed and developing markets 

 The portfolio allocation for assets in all 37 developed and developing 

markets combined is presented in Table 4. 

[Insert table 4 here] 

 For pure mean-variance preference (a = 1, b = 0), once again the optimal 

portfolio in the daily returns case covers all the markets in the sample, with the 

highest percentage allocated to Turkey (4.62%), followed by Finland (4.60%) and 

the lowest percentage allocated to China (0.89%).  On the other hand, the allocation 

in the weekly returns case covers 13 countries (Australia, Austria, Belgium, Canada, 
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China, Denmark, Finland, Greece, Ireland, New Zealand, Spain, Turkey and US), 

with the highest weights going to Denmark (18.62%), Ireland (16.10%) and Canada 

(13.23%).  In the case of monthly returns, the allocation of assets is spread across 

nine countries (Australia, Austria, Canada, China, Denmark, Greece, Ireland, Turkey 

and US), a subset of the countries selected when using weekly returns, with the 

highest being Denmark (35.82%), US (22.89%) and Ireland (12.94%).  Note that the 

increase in investment interval reduces the number of markets invested in as well as 

changes the compositions of the optimal portfolio.   

 In the mean-variance-skewness framework (a = 1, b = 1), the funds are 

allocated to nine markets (Argentina, Hong Kong, Indonesia, Philippines, Spain, 

Thailand, UK, US and Venezuela) in case of daily returns, with the majority of funds 

going to Thailand (63.60%).  However, the optimal portfolio consists of ten 

countries when using weekly returns (Brazil, Chile, China, Greece, Malaysia, 

Mexico, New Zealand, Poland, Portugal and UK), with three fourths of the funds 

allocated to China (76.92%); whereas for monthly returns the optimal mean-

variance-skewness portfolio includes seven countries, namely Austria, Belgium, 

Brazil, China, Ireland, Thailand and United Kingdom, with the concentration of 

assets in China (77.92%) again.  Note that there are only two countries, China and 

UK, selected in all three cases (daily, weekly and monthly).  Also, when daily and 

weekly returns are used, more developing countries (five out of nine in daily returns 

case and seven out of ten in weekly return case) are selected than developed 

countries. 

 

6. Conclusion     
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 In this paper, we both empirically examine the intervalling effect on the 

variance and skewness of the distribution of returns and study the implication of this 

effect on portfolio construction.  The theory predicts that the variance as well as the 

skewness should increase if we increase the investment interval.  In other words, the 

variance as well as the skewness of the weekly rates of return will be smaller than 

that of, say, monthly rates of returns.  Earlier research findings (Fisher and Lorie, 

1970, Chunhachinda et al., 1997) empirically support the theoretical predictions.  

Our study supports the Prakash et al. (2003) empirical findings in that the empirical 

evidence for theoretically predicted behavior of variance pertaining to investment 

interval is confirmed, but the empirical evidence for skewness is mixed. 

Like previous studies by Chunhachinda et al. (1997) and Prakash et al. (2003), we 

then implement the polynomial goal programming technique to identify the optimal 

portfolio allocation among developing and developed markets.  Some resulting 

optimal portfolios appear at first to lack common sense, and these are portfolio with: 

1) the highest weights in very small capital markets such as Finland and Denmark, 2) 

weights of 40-50% or higher in a single capital market in Hong Kong, in Switzerland 

and in Italy, etc., and 3) finally, a seemingly implausible allocation of over 80% in 

China using weekly returns, and over 90% using monthly returns11.  However, in the 

mean-variance-skewness setting these outcomes are actually sensible.  For example, 

an examination of Table 1 shows China has a positive skewness, with favorable 

mean return and variance to match, that is 5 times the skewness calculated for the 

nearest country.  It is thus natural for the bulk of the allocation to go to China.  

Overall we find that the choice of investment interval changes not only the allocation 

weights, but the number of markets or assets in the portfolio as well.  This 

phenomenon is observed for both developing and developed countries. 
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TABLE 1  Summary statistics – daily, weekly and monthly return  

                         

  mean return   variance   skewness   kurtosis   W-statistic   Prob<W 

  Daily Weekly Monthly  Daily Weekly Monthly  Daily  Weekly Monthly  Daily Weekly Monthly  Daily Weekly Monthly  Daily Weekly Monthly 
                         

ARGENTINA  0.0002 0.0005 0.0024  0.0004 0.0021 0.0100  -0.8495 -0.2370 -0.2307  22.8456 6.4896 3.5221  13.7882 6.3390 -0.3356  0.00000 0.00000 0.36857 

AUSTRALIA  0.0004 0.0019 0.0085  0.0001 0.0005 0.0026  -0.0883 -0.1574 -0.1981  6.3017 4.0250 3.0163  9.6489 2.7475 0.4081  0.00000 0.00300 0.34161 

AUSTRIA  0.0004 0.0019 0.0083  0.0001 0.0004 0.0021  -0.2432 -0.1968 -0.0826  4.5185 3.1989 2.9181  8.1500 1.4716 0.0561  0.00000 0.07056 0.47761 

BELGIUM  0.0004 0.0020 0.0088  0.0001 0.0005 0.0020  0.1810 -0.0508 -0.6251  6.7387 5.3161 3.8808  10.7774 5.5755 2.4034  0.00000 0.00000 0.00812 

BRAZIL  0.0004 0.0022 0.0108  0.0004 0.0023 0.0131  0.0731 -0.3584 -0.0869  9.2307 4.4557 4.4773  11.6898 4.7448 2.2738  0.00000 0.00000 0.01149 

CANADA  0.0004 0.0023 0.0101  0.0001 0.0006 0.0026  -0.6190 -0.4800 -0.8191  7.9072 5.6051 4.9721  11.4400 6.3816 3.1047  0.00000 0.00000 0.00095 

CHILE  0.0003 0.0010 0.0048  0.0001 0.0007 0.0040  0.0403 -0.1310 -0.1643  6.4451 4.7526 4.2652  10.2277 4.5981 1.5272  0.00000 0.00000 0.06335 

CHINA  0.0003 0.0035 0.0188  0.0005 0.0038 0.0259  1.7677 8.5074 6.6416  55.7048 132.8300 61.5890  15.5637 12.3190 8.8364  0.00000 0.00000 0.00000 

DENMARK  0.0005 0.0027 0.0113  0.0001 0.0005 0.0023  -0.2031 -0.5594 -0.5102  5.5404 5.5681 3.8194  9.6764 5.6663 1.6286  0.00000 0.00000 0.05170 

FINLAND  0.0009 0.0043 0.0185  0.0004 0.0020 0.0088  -0.2485 -0.2707 0.2986  9.4082 5.6548 4.1197  11.8939 6.1520 1.8624  0.00000 0.00000 0.03127 

FRANCE  0.0004 0.0019 0.0083  0.0001 0.0006 0.0025  -0.0881 -0.0306 -0.1619  5.1572 4.5032 2.8499  9.5143 4.3028 -0.0271  0.00000 0.00001 0.48918 

GERMANY  0.0003 0.0016 0.0070  0.0001 0.0007 0.0029  -0.1604 -0.1443 -0.3773  5.2235 5.1820 4.0218  9.5227 5.6163 1.8064  0.00000 0.00000 0.03543 

GREECE  0.0005 0.0028 0.0122  0.0003 0.0015 0.0068  0.0989 0.3281 0.3207  6.5628 5.2990 4.2020  11.3140 6.2304 1.6119  0.00000 0.00000 0.05349 

HONG KONG  0.0003 0.0017 0.0082  0.0003 0.0013 0.0071  0.2877 -0.1337 0.4240  13.1525 5.4948 5.0792  12.8501 5.4997 3.3389  0.00000 0.00000 0.00042 

INDONESIA  0.0002 0.0012 0.0037  0.0008 0.0051 0.0194  0.0145 0.8958 0.4586  24.5569 18.3960 4.8372  15.2183 10.1220 2.3992  0.00000 0.00000 0.00822 

IRELAND  0.0005 0.0027 0.0115  0.0001 0.0006 0.0026  -0.2592 -0.4133 -0.4827  6.7421 5.9723 3.8617  10.8857 6.3679 2.1881  0.00000 0.00000 0.01433 

ITALY  0.0004 0.0020 0.0088  0.0002 0.0009 0.0041  -0.0054 0.3440 0.4925  5.3270 7.2748 3.1461  9.4419 6.7120 1.5310  0.00000 0.00000 0.06288 

JAPAN  0.0000 0.0000 -0.0002  0.0002 0.0009 0.0036  0.2687 0.3756 0.3115  6.8186 3.9626 2.7833  10.1547 4.0158 1.2379  0.00000 0.00003 0.10787 

KOREA  0.0005 0.0021 0.0098  0.0006 0.0035 0.0175  0.8728 -0.0621 1.2806  18.2923 10.2720 8.3359  13.7138 8.0972 4.7401  0.00000 0.00000 0.00000 

MALAYSIA  0.0001 0.0004 0.0016  0.0004 0.0022 0.0107  0.2374 0.4916 0.7779  49.7505 20.2520 7.3309  15.8884 10.5470 5.0602  0.00000 0.00000 0.00000 

MEXICO  0.0004 0.0016 0.0069  0.0003 0.0017 0.0081  -0.3461 -0.2948 -1.0738  16.7474 6.9221 5.6056  13.7637 6.6420 4.1555  0.00000 0.00000 0.00002 

NETHERLANDS  0.0004 0.0018 0.0078  0.0001 0.0006 0.0022  -0.1319 -0.2432 -0.7903  6.6094 6.5516 3.8267  11.1058 6.9847 3.2127  0.00000 0.00000 0.00066 

NEW ZEALAND  0.0003 0.0016 0.0073  0.0001 0.0006 0.0034  -0.5126 -0.2820 -0.3495  12.4075 4.7582 3.4381  11.9652 4.9176 0.9305  0.00000 0.00000 0.17606 

NORWAY  0.0005 0.0025 0.0108  0.0001 0.0008 0.0036  -0.4337 -0.2637 -0.6402  6.8455 6.0065 5.0158  10.8882 6.4547 2.6739  0.00000 0.00000 0.00375 

PHILIPPINES  0.0000 -0.0006 -0.0024  0.0003 0.0016 0.0091  1.3790 -0.1784 0.9192  22.5492 8.5182 7.8794  13.8211 7.7885 4.2684  0.00000 0.00000 0.00001 

POLAND  0.0001 0.0020 0.0081  0.0004 0.0022 0.0107  0.1224 0.0155 0.2108  9.1762 4.4498 4.6287  11.8560 4.7867 1.9877  0.00000 0.00000 0.02343 

PORTUGAL  0.0004 0.0016 0.0072  0.0001 0.0006 0.0031  -0.1407 0.0802 0.0267  6.0824 5.8383 3.1133  10.1722 5.4000 -0.2893  0.00000 0.00000 0.38616 

SINGAPORE  0.0002 0.0008 0.0041  0.0002 0.0010 0.0050  0.2284 -0.1766 0.1701  10.2131 8.2715 4.9293  12.2886 7.5084 3.8429  0.00000 0.00000 0.00006 

SPAIN  0.0005 0.0026 0.0113  0.0001 0.0007 0.0032  -0.1147 0.0115 0.0421  5.1317 4.4837 4.0736  9.3143 4.1353 0.7031  0.00000 0.00002 0.24099 

SWEDEN  0.0006 0.0029 0.0125  0.0002 0.0012 0.0052  0.0130 0.1959 -0.2448  6.5652 7.5598 3.8298  10.6922 6.5647 0.3656  0.00000 0.00000 0.35732 

SWITZERLAND  0.0004 0.0022 0.0096  0.0001 0.0005 0.0022  -0.0897 0.0762 -0.3901  6.1141 5.6997 3.9971  10.1254 5.7001 1.1050  0.00000 0.00000 0.13459 

TAIWAN  0.0003 0.0009 0.0036  0.0003 0.0017 0.0084  0.0858 0.3470 0.4209  5.6234 5.4609 3.6571  10.3707 5.7619 1.5854  0.00000 0.00000 0.05644 

THAILAND  0.0001 -0.0001 0.0003  0.0005 0.0029 0.0153  0.7642 0.4628 0.4579  10.2383 5.8306 4.3881  12.8011 6.7210 3.1589  0.00000 0.00000 0.00079 

TURKEY  0.0009 0.0051 0.0229  0.0012 0.0061 0.0321  0.2043 0.1560 0.8475  8.3426 9.9015 5.4604  11.8756 7.8234 3.7959  0.00000 0.00000 0.00007 

UK  0.0003 0.0015 0.0065  0.0001 0.0004 0.0015  -0.1358 -0.1023 -0.4009  5.3113 5.0337 2.8094  9.5009 4.9248 1.6920  0.00000 0.00000 0.04532 

US  0.0004 0.0019 0.0083  0.0001 0.0005 0.0019  -0.0325 -0.4556 -0.6155  6.8570 6.6897 3.4874  10.9895 6.5350 2.4264  0.00000 0.00000 0.00763 

VENEZUELA  0.0000 -0.0001 0.0016  0.0006 0.0031 0.0167  -3.1531 -1.2373 -0.2730  89.4414 19.6620 5.3430  15.6911 9.6740 3.7295  0.00000 0.00000 0.00010 
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TABLE 2:  Polynomial goal programming: developed ma rkets 
                     
 Daily Returns  Weekly Returns  Monthly Returns 
Parameters                     

a 1 0 1 2 1 2  1 0 1 2 1 2  1 0 1 2 1 2 
b 0 1 1 1 2 2  0 1 1 1 2 2  0 1 1 1 2 2 

                     

Optimal Portfolio Composition                   
AUSTRIA 3.04%       8.77%       6.90%  2.87%  17.94% 16.74% 

BELGIUM 4.22%   3.39%  5.77%  5.29% 2.74% 4.47% 3.41% 10.69% 6.42%  3.71%    0.85%  
DENMARK 3.92%       12.07%       35.90%      

FINLAND 8.31% 4.74% 7.69% 4.39% 12.46%   12.61% 4.24% 5.66% 4.42% 11.98% 8.34%  6.00%      
FRANCE 5.65%       0.09%             

GERMANY 5.70%                    
GREECE 4.50%       7.99%    1.81%   0.03%      

IRELAND 3.96%       11.26%    2.66%   17.42%      
ITALY 5.29%       0.93% 51.96% 47.87% 51.53% 27.34% 34.81%        
NETHERLANDS 5.54%                    
NORWAY 4.87%       5.92%             
SPAIN 5.35%       5.97%             
SWEDEN 6.87% 27.70% 25.43% 25.63% 22.61% 22.44%  1.76%    9.42% 18.07%        
SWITZERLAND 4.57%       6.04% 24.46% 25.96% 23.99% 20.93% 15.29%   38.32% 40.97% 39.79% 41.54% 36.89% 
UK 4.30%                    
AUSTRALIA 3.28%       5.51%       2.91%      
CANADA 3.20%       7.05%       3.09%      
NEW ZEALAND 2.83%  2.42% 4.88% 4.20%   3.76%             
US 2.60% 29.83% 28.23% 26.99% 30.72% 28.51%  4.97%       24.05%      
JAPAN 3.38%                    
SINGAPORE 3.66% 33.70% 34.49% 30.73% 30.01% 43.27%       2.23%        
HONG KONG 4.96% 4.03% 1.74% 3.99%     16.60% 16.05% 16.65% 15.18% 14.84%   61.68% 56.15% 60.21% 39.67% 46.36% 
                     
Optimal portfolio statistics (all are unit variance)                 
mean 5.19% 2.77% 2.89% 2.81% 2.95% 2.92%  13.37% 8.97% 9.27% 9.00% 10.53% 9.69%  28.86% 14.37% 15.21% 14.59% 17.95% 16.79% 
skewness -0.24 0.20 0.20 0.20 0.16 0.18  -0.20 0.47 0.47 0.47 0.41 0.44  -0.50 0.51 0.51 0.51 0.42 0.47 

                     
Note: The weight in the goal programming model on deviation from maximum return is a, the weight on deviation from maximum skewness is b.      
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TABLE 3:  Polynomial goal programming: developing m arkets 

                     
 Daily Returns  Weekly Returns  Monthly Returns 
Parameters                     

a 1 0 1 2 1 2  1 0 1 2 1 2  1 0 1 2 1 2 
b 0 1 1 1 2 2  0 1 1 1 2 2  0 1 1 1 2 2 

                     
Optimal Portfolio Composition                   
CHINA 3.51%    1.90% 0.21%  22.11% 80.96% 80.51% 81.56% 23.96% 21.85%  21.22% 90.36% 90.29% 90.38% 83.62% 88.94% 
INDONESIA 10.10%            5.11%        
KOREA 9.40%       4.99%    7.33% 3.58%  9.05%      
MALAYSIA 6.56%        1.02% 0.97% 1.06%  7.51%        
PHILIPPINES 5.44% 100.00% 100.00% 100.00% 91.23% 99.50%          2.23% 1.70% 2.07%  0.69% 

TAIWAN 5.28%           0.54% 3.55%        
THAILAND 8.96%               2.73% 2.78% 2.77% 0.65% 3.06% 

ARGENTINA 6.55%     0.14%               
BRAZIL 7.08%       5.20% 2.87% 2.89% 3.41% 7.73% 6.98%  4.43% 4.67% 5.23% 4.78% 7.95% 5.11% 

CHILE 3.86%    4.25% 0.09%  0.53% 3.23% 3.21% 3.40% 3.25% 2.86%        
MEXICO 6.53%    2.10%   1.05% 3.30% 3.34% 3.12% 4.88% 9.41%  2.74%      

VENEZUELA 6.38%            4.81%        
PORTUGAL 2.66%    0.48% 0.05%  48.27% 7.50% 7.92% 6.18% 21.36% 9.73%  45.29%    5.16% 0.21% 

TURKEY 10.95%    0.04% 0.01%  16.16% 0.00% 0.00% 0.00% 22.21% 16.62%  16.55%    2.62% 1.98% 
POLAND 6.73%       1.69% 1.11% 1.15% 1.27% 8.75% 7.99%  0.72%      
                     
Optimal portfolio statistics (all are unit variance)                 
mean 3.03% 2.60% 2.60% 2.60% 2.89% 2.65%  10.14% 6.20% 6.22% 6.18% 9.76% 8.89%  19.43% 11.87% 11.91% 11.88% 12.78% 12.24% 
skewness -0.25 1.38 1.38 1.38 1.31 1.35  1.47 8.60 8.60 8.60 1.12 1.12  1.39 6.65 6.65 6.65 6.60 6.64 

                     
Note: The weight in the goal programming model on deviation from maximum return is a, the weight on deviation from maximum skewness is b.      
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TABLE 4: Polynomial goal programming: all markets 

                     

 Daily Returns  Weekly Returns  Monthly Returns 

Parameters                     

a 1 0 1 2 1 2  1 0 1 2 1 2  1 0 1 2 1 2 

b 0 1 1 1 2 2  0 1 1 1 2 2  0 1 1 1 2 2 
                     

Optimal Portfolio Composition                   

ARGENTINA 2.74% 0.29% 2.86%                              

AUSTRALIA 2.08%       4.27%            1.75%           

AUSTRIA 1.67%    0.44%   8.41%            3.18% 4.70% 5.73% 4.46%   11.42% 

BELGIUM 2.21%    0.31% 1.65%  2.03%              5.74% 6.51% 6.53% 1.69% 3.66% 

BRAZIL 3.13%         2.21% 2.36% 2.37%        4.31% 4.56% 4.44%   5.80% 

CANADA 1.94%       13.23%            8.97%           

CHILE 1.86%         1.73% 1.94% 2.07%                  

CHINA 0.89%   0.82% 1.71%   10.98% 77.00% 76.92% 77.54%      8.94% 80.54% 77.92% 79.67% 74.83% 68.20% 

DENMARK 2.15%       18.62%            35.82%       13.52%   

FINLAND 4.60%       3.26%                      0.45% 

FRANCE 3.05%                                

GERMANY 3.10%                                

GREECE 2.55%     0.20%  5.93% 3.90% 4.15% 4.01%      3.58%           

HONG KONG 3.48% 2.95% 2.49% 3.35% 6.01% 4.93%                           

INDONESIA 3.94% 3.63% 1.68% 2.11% 13.92% 15.67%          48.06% 48.19%              

IRELAND 2.17% 1.54%   1.98%   16.10%            12.94% 1.89% 2.71% 2.12%   9.45% 

ITALY 2.85%                                

JAPAN 2.15%                                

KOREA 3.99%    2.25%           14.12% 14.16%              

MALAYSIA 2.64%         0.79% 0.68% 0.71%                  

MEXICO 3.07%         2.53% 2.32% 2.35%                  

NETHERLANDS 2.99%                                

NEW ZEALAND 1.78%       2.25% 2.02% 2.01% 1.82%                1.01% 

NORWAY 2.76%                                

PHILIPPINES 2.17% 20.61% 21.97% 21.90% 14.10% 15.71%                       5.70%   

POLAND 3.34%         0.11% 0.09% 0.09%                  

PORTUGAL 2.07% 1.19%  0.11% 0.68% 0.01%    3.12% 3.09% 3.18% 20.43% 20.29%              

SINGAPORE 2.68%                            4.26%   

SPAIN 2.95%  0.06%  1.20% 0.27%  0.73%                        

SWEDEN 3.83%                                

SWITZERLAND 2.41%               5.11% 4.96%              

TAIWAN 2.18%                                

THAILAND 3.72% 62.87% 63.60% 64.33% 49.82% 55.24%          12.28% 12.41%    2.21% 1.63% 2.02%     

TURKEY 4.62%       4.79%            1.94%           

UK 2.38% 0.17% 0.54%  1.54% 0.63%    6.58% 6.44% 5.85%        0.61% 0.94% 0.76%     

US 1.57% 3.53% 4.51% 4.22% 6.04% 4.39%  9.39%            22.89%           

VENEZUELA 2.26% 3.23% 2.30% 3.15%  1.32%                           
                     

Optimal portfolio statistics (all are unit variance)                 

mean 4.75% 0.65% 0.66% 0.63% 0.66% 0.66%  14.66% 6.46% 6.47% 6.44% 2.90% 2.89%  30.43% 12.72% 12.96% 12.80% 12.93% 14.05% 

skewness -0.38 0.81 0.81 0.81 0.79 0.80  0.04 8.62 8.62 8.62 1.12 1.12  -0.42 6.66 6.66 6.66 6.56 6.63 
                     

Note: The weight in the goal programming model on deviation from maximum return is a, the weight on deviation from maximum skewness is b.      



 

Endnotes: 
 
 
                                                
1 See Harris, Kucukozmen, and Yilmaz (2004), p. 195. 

2 See  Josey, Brooks and Faff (2001). To avoid any confusion with phrases like “invest horizon”, 

“holding period rate of return” etc. we have adopted the phrase “investment interval” throughout this 

paper. 

3 This brief discussion on the effect of intervalling on variance and skewness of the rates of return 

probability distribution is largely taken from Prakash, de Boyrie, Hamid and Smyser (1997). 

4 Dividends are ignored. Whether they are deterministic or random they can be considered a part of 

1−jP or jP
~

 respectively. 

5 Whether we examine the probability distribution of jr~ or one plus the rate of return (wealth ratio) the 

result remains the same. 

6 Some of the skewness measures are negative.  Here, we provide the count for absolute skewness 

only.  If, however, we do not ignore the negative signs, then the weekly skewness in two, rather than 

one, instances is greater than its monthly counterparts. 

7 To convert the standard deviation of the annualized weekly return to the weekly return, divide the 

obtained standard deviation by the square root of 52.  Similarly, the monthly standard deviation can be 

obtained by dividing the standard deviation of the annualized monthly return by the square root of 12. 

8 There will not be any difference in the measure of skewness whether it is obtained “holding period” 

or nominally annualized returns. 

9 See Prakash et. al. (2003) for exact definitions of a and b. 

10 Other combination values of a and b is provided because in this programming problem one can 

increase the preferences for a parameter at will.  However, theoretically speaking, the paper is 

concerned mainly with the comparison of mean-variance versus mean-variance-skewness preferences. 

11 We are indebted to an anonymous referee for pointing this findings out. The explanations have been 

provided about these seemingly ”implausible” findings.  


