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We develop a general model to price VIX futures contracts. The model is adapted
to test both the constant elasticity of variance (CEV) and the Cox—Ingersoll-Ross
formulations, with and without jumps. Empirical tests on VIX futures prices pro-
vide out-of-sample estimates within 2% of the actual futures price for almost all
futures maturities. We show that although jumps are present in the data, the
models with jumps do not typically outperform the others; in particular, we
demonstrate the important benefits of the CEV feature in pricing futures con-
tracts. We conclude by examining errors in the model relative to the VIX charac-
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INTRODUCTION

Volatility and Financial Markets

Volatility remains an important, but opaque, topic in financial economics after
four decades of study. Researchers have attempted to forecast volatility by
using more sophisticated quantitative models and by employing GARCH and
implied volatility models; however, the explanatory power of these forecasts is
relatively low. Poon and Granger (2003) review the literature on forecasting
volatility and related issues, concluding that much needs to be done to under-
stand the process and characteristics of volatility.

The introduction of exchange-traded volatility futures and over-the-counter
volatility swaps allows for speculation and hedging of future volatility. These
products have created increased interest in forecasting the direction and size of
changes in volatility. Previous models to price volatility futures encountered
several problems in their quest to develop a precise and accurate method to
value these contracts, not the least of which is the complexity of the time series
behavior of volatility (such as successfully incorporating jumps into the
process). Here we propose and test a simple yet flexible constant elasticity of
variance (CEV) model with and without jumps to price volatility futures, and to
compare the model against the often used Cox—Ingersoll-Ross formulation.

Volatility Futures

Implied volatility has long been a popular measure of the “fear” and “exuber-
ance” in the stock market (see Hibbert, Daigler, & Dupoyet, 2008; Low, 2004;
Whaley, 2000), as well as a measure of the market’s forecast of future volatility.
The current spot VIX (as opposed to the futures VIX price) measures expected
future volatility by determining the constant 30-day implied volatility of priced
out-of-the-money S&P 500 option strikes as a weighted average of the nearby
and first deferred option expirations.'

Volatility futures are a relatively new instrument that allows users to trade
volatility directly rather than indirectly attempting to manage volatility through
option sensitivities. The volume of the VIX futures fluctuates based on the
volatility in the market and the time to futures expiration, with changes in
the bid—ask spread occurring frequently throughout the day. VIX futures prices
are affected by the time to expiration of the futures, the mean reversion char-
acteristics of the expected implied volatility, and potentially the market’s fore-
cast of possible jumps in the VIX.

'When the S&P 500 options approach expiration then the nearby maturity is dropped from the calculation

when five days are left until expiration; at that time and the first and second deferred maturities are employed
in the calculation.
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Testing the Pricing of Volatility Futures

Futures pricing models for stock index futures (and for similar contracts such as
currency futures) are arbitrage cost-of-carry models that relate the underlying
asset price to the futures price via holding the asset. VIX futures possess differ-
ent characteristics as it is a non-traded asset, since holding the “underlying
asset” for the VIX futures (a portfolio of S&P 500 options for almost all priced
out-of-the-money calls and puts) is infeasible due to cost and liquidity issues.
Moreover, the characteristics of the spot VIX include mean-reversion and jumps
in the level, as well as changing volatility levels, making it difficult to keep a
zero-risk hedged portfolio. Several volatility futures models have emerged in the
literature; however, these models generally do not include all the above factors
and therefore typically are too basic to price VIX futures adequately.

Our approach differs from previous research that theoretically models the
VIX in that it includes both the CEV and Poisson jumps (previous models are
discussed shortly). Therefore, compared to previous attempts to model the VIX
for the purpose of pricing derivatives, our model includes more of the compo-
nents that could drive the implied volatility of the S&P 500, while still manag-
ing a relatively simple structure. The model involves a two-step process. First,
we posit various dynamics of the VIX and then estimate the parameters that
determine the evolution of this VIX process over time. Second, we derive the
VIX futures values based on our various VIX model specifications, and then test
the models’ pricing abilities using actual market values.

This study provides comprehensive empirical testing of fair VIX futures
values against actual VIX futures prices.” The out-of-sample empirical results
from our CEV model track the VIX futures well, especially for the 60 days before
expiration, such that the average Mean Signed Percentage Error (MSPE) is
typically below 1.2% (13 basis points). The Mean Absolute Percentage Error
(MAPE) for these time intervals is always less than 4.5% (67 basis points).
Importantly, the model outperforms other alternatives, including the
Grunbichler and Longstaff (1996) and Zhang and Zhu (2006) formulations,
with these alternatives based on the Cox—Ingersoll-Ross (1985) approach, a
nested model of our general formulation. The size of the average errors increas-
es slightly for a longer time to futures maturity. However, the empirical results
also show that models with jumps are not optimal for the best out-of-sample
results. In the final section of the study we examine potential reasons for the
difference between actual and model futures prices.

*Zhang and Zhu (2006) test their model against futures prices, but they only examine the closing price from
one day. Dotsis et al. (2007) perform empirical comparisons of models but these are limited to a geometric
Brownian motion and a square root process. Lin’s (2007) empirical results are not the focus of her study and
are limited in scope, as discussed later.
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CHARACTERISTICS OF THE VIXAND
VIX FUTURES

Calculation of the Spot VIX

In October 2003, the calculation of the spot VIX changed in order to make it
compatible for derivative instruments to be based on the VIX, to reflect the
institutional interest in the S&P 500 index instead of the previously used S&P
100 index, and to include the effect of the smile (skew) that occurs with S&P 500
index option prices. The new VIX uses a new formula that is not adversely
affected by the assumptions of the Black—Scholes option pricing model, espe-
cially the resultant implication of an equal volatility across all strike prices. In
addition, the options on the S&P 500 are European in nature, whereas the pre-
viously used OEX 100 options are American options.>

The spot VIX represents a constant 30-day implied volatility based on the
S&P 500 index options and is calculated as follows:

2 AK. 1| F 2
2 _ 2 i RIT A - _
VIX T > K2 efTO(K,) T{K 1} (1)

i 0

where T is the time until the option’s expiration expressed in years, F is the for-
ward index level derived using the S&P 500 index option prices, K; is the strike
price of the ith out-of-the-money option relative to F, AK; equals the interval
between strike prices and is defined as AK; = (K;, |, — K,)/2, K, is the first strike
below the forward index level F, R is the annualized risk-free interest rate to
expiration, and Q(K;) equals the midpoint of the bid—ask spread for the option
with strike price K;. The VIX keeps a constant 30-day maturity by using a
weighted average of the nearby and first deferred option maturities.* The for-
mula is a discretization of the mathematical derivation of return variance, as
shown by Carr and Wu (2006).”

This calculation employs the S&P 500 call and put index options that are
both out-of the money relative to the forward index F and have a non-zero bid
price.® Therefore, essentially the entire tradable range of the implied volatility

*The previous VIX value (now referred to as the VXO) is calculated using the Black—Scholes implied volatili-
ties on only the four call and four put S&P 100 (OEX) index options closest to the at-the-money strike. While
both measures are provided to the marketplace, the new VIX has become the standard for measuring implied
volatility in the market.

*When the S&P 500 options approach expiration, the nearby maturity is dropped from the calculation when
five days are left until expiration; at that time and the first and second deferred maturities are employed in
the calculation.

*Biases in the discrete VIX formulation are discussed later.

“Technically one chooses all out-of-the-money calls and puts with non-zero bid prices as one moves away
from the forward index value until one encounters two consecutive options with a zero bid-price. No other
away-from-the-money options are employed in the calculation after this point.

Journal of Futures Markets ~ DOI: 10.1002/fut



Volatility Futures Pricing Model 311

smile (smirk) is included in the VIX calculation. Since the calculation is based
on bid and ask prices, the implied volatilities do not change as option transac-
tions prices change from the bid to the ask price. Theoretically, this new calcu-
lation procedure for the VIX yields an asset that could be hedged using a

weighted combination of options.’

VIX Futures and the Data

The VIX futures started trading on the Chicago Futures Exchange in March
2004. Here we examine contracts that expire from May 2004 (the first expira-
tion) through September 2006. In order to estimate our VIX model, we employ
the spot VIX index closings for the two years preceding the day where the VIX
futures theoretical price needs to be calculated and then we compare the
model prices against the observed VIX futures market price. Thus, each day
the parameters for the VIX model are updated using the most recent two years
of historical data in order to determine the long-term mean-reverting value for
the VIX. We take advantage of an interesting result found in Henderson,
Hobson, Howison, and Kluge (2004), Daouk and Guo (2004), Psychoyios and
Skiadopoulos (2006), and Dotsis, Psychoyious, and Skiadopoulous (2007) who
show that model rankings do not depend on risk premium values as model
prices are a monotonic function of the price of risk of volatility; for model’s
comparison purposes we therefore assume the price of risk to be zero. Next, the
most recent spot market data is used to obtain the VIX futures estimates for
the four models developed here. Finally, we compare the actual VIX futures
prices to the estimates of each of the four models to determine which model is
most compatible with actual VIX daily futures prices. As with all such models,
any errors can be the result of an imperfect model or incorrectly valued actual
futures prices.

Figure 1 illustrates the historical behavior of the VIX during the time peri-
od of this study, with the VIX ranging from 10.23 to 23.81%. Several spikes in
volatility are apparent, as is the mean-reverting nature of the VIX after both
spikes in volatility and longer-term trends in the VIX.

"Note that the spot VIX squared can be replicated with a static combination of S&P500 index options, but
that VIX futures require a dynamic hedge. Moreover, the formula for the spot VIX is model-free, but the one
for VIX futures is model dependent. Therefore, the volatility model employed for the VIX futures is critical.
The dynamic hedge involves a strip of options. As the relative value of the S&P 500 options change, the
weights of the options in the dynamic portfolio change, complicating the objective of reducing the basis risk
by hedging. The futures settle to the 30-day S&P 500 option VIX value due to the settlement procedure.
Moreover, the settlement procedure uses the actual open prices of options traded on the settlement day,
rather than bid—ask spreads; this procedure has caused biased VIX futures settlement prices compared to the
equivalent spot VIX (see Pavlova and Daigler, 2008).
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FIGURE 1

Values of the spot VIX for the forecast period.

Current VIX Derivatives Pricing Models

Researchers believe that a number of factors describe the time series behavior
of volatility, and therefore the appropriate price of volatility futures. These fac-
tors include the mean-reversion of volatility, jumps in the S&P 500 index and
in volatility, and the stochastic volatility of the VIX and possibly of the S&P 500
index. However, some factors are difficult to model, such as both the frequen-
cy and the size of jumps. Other factors, such as a risk premium, are difficult to
estimate accurately with market data. Thus, most volatility futures models
ignore or simplify many of these characteristics in order to provide a tractable
model that is usable by traders. Consequently, a model to price futures could
be biased, depending on the procedure employed to estimate the parameters of
the factors included in the model. Therefore, the form of the appropriate model
to price volatility futures essentially becomes an empirical question. This study
examines the empirical aspect of pricing volatility futures by developing four
models with differing characteristics and then tests these models empirically
for several years of data.

Grunbichler and Longstaff (1996), Carr and Wu (2006) Zhang and Zhu
(2006), Dotsis et al. (2007) and Lin (2007) provide VIX derivatives pricing
models. Grunbichler and Longstaff employ a square root process for volatility,
which is less general than the CEV approach, and does not include the possi-
bility of jumps in the VIX; conversely, Duan and Yeh (2007) show that incorpo-
rating a jump risk factor is critically important for the VIX index, and they
conclude that both jumps and volatility risks are priced. Zhang and Zhu model
VIX futures based on the variance swap rate and a maximum likelihood estima-
tion function by specifying a process for the square of the VIX instead of the
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VIX itself.® Thus, Zhang and Zhu choose the same stochastic differential equa-
tion as Grunbichler and Longstaff (which is essentially a Cox, Ingersoll, and
Ross (1985) model), with the volatility component being limited to a square
root process with no jump components. In addition, their model includes a
mean-reverting component and the variance of the S&P 500 index returns is
tied to the S&P 500 index through a constant correlation coefficient. However,
using the variance of the S&P 500 creates some estimation difficulties and the
resultant Zhang and Zhu futures model is not a closed-form one. Moreover, in
limiting valuation to (only) one specific day, their estimation procedure does
not provide a reliable value for the volatility risk premium, so they consequent-
ly ignore the output of their own model and employ the estimate of the risk pre-
mium from previous research. None of these studies test their model on actual
VIX futures data for more than one day.

Carr and Wu (2006) develop lower and upper bounds for the VIX futures
price based on the forward volatility and forward variance swap rates. However,
the arbitrage bounds that they develop are very wide, averaging 1'/, points
above and below the fair price. Such a range is quite large given the typical
level of the VIX futures and is significantly larger than the typical VIX futures
bid—ask spread. Therefore, compared to the previous attempts to model VIX
derivatives discussed above, our model includes more of the components that
could drive the implied volatility of the market and is more straightforward in
its approach.

Dotsis et al. (2007) explore the ability of several diffusion and jump-
diffusion models to capture the dynamics of implied volatility indices. They
also examine the pricing performance of the corresponding volatility futures
pricing models. However, although they allow for jumps, the models are limit-
ed to either a mean-reverting square root process or a geometric Brownian
motion. Our CEV formulation provides additional flexibility not found in such
specifications.

Lin (2007) develops the most complete VIX futures price model. Her
model includes jumps and stochastic volatility of the S&P 500 and risk-premium
variables. However, as stated by the author (Lin, 2007, p. 1187) “This study
primarily focuses on parameter estimation” rather than testing the accuracy of
the model. More importantly, the relative completeness of the model is offset
by its complexity. Consequently, it is unlikely that practitioners would adopt
the Lin model, since the interaction of the terms is not easy to understand and the
model would be difficult to program for normal trading purposes. Moreover,
the likely sensitivity of fitting the model’s parameters to changes in the sample

8Zhang and Zhu (2006, p. 522) specify that “The VIX squared is equal to the 30-calendar-day variance swap
rate.”
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period (unreported in her study) raises the question of the accuracy and stabil-
ity of the model.” In particular, the risk premium parameter fits the data to
minimize the error. Consequently, a change in the behavior of volatility can
cause a major change in the risk premium value. In fact, Garcia, Lewis,
Pastorello, and Renault (2006) show that the estimated volatility risk premium
for mark-dollar futures options differ across time periods for their data. Finally,
the Lin and the Dotsis et al. (2007) articles are the only ones to empirically test
their model, and the size and consistency of the errors reported in the Lin study
are not clearly identified."”

EXAMINING VOLATILITY DERIVATIVE FACTORS

Factors Affecting the VIX and VIX Futures

There are a number of factors affecting the VIX and thus the VIX futures. It is
well known that volatility is stochastic and mean-reverting over time. Jumps
can exist in volatility, although the frequency and size of the jumps is not well
known. The next two sections discuss the mean-reversion and jump character-
istics of the VIX and its effect on VIX futures. We also discuss the bias in the
method to calculate the VIX and issues relating to the settlement procedure of
the VIX futures.

Figure 1, shown earlier, illustrates the mean-reverting characteristic of
the VIX. Figure 2 provides an average term structure of the VIX futures over the
entire sample, which shows that the futures flatten out for longer-term expira-
tions, showing the longer-term effect of the mean-reverting characteristic on
futures prices.

Figure 3 shows the slope coefficient obtained by regressing the change in
the spot VIX on the change in the VIX futures. Thus, the futures only partially
respond when there are more than 10 trading days until expiration, with the
response coefficient increasing to near 1.0 when the contract is near expira-
tion. The muted futures responsiveness for longer times to expiration supports
the market’s interpretation of the mean-reversion characteristic of the VIX.

Another factor affecting the new VIX is the existence of biases associated
with the VIX calculation procedure compared to a model-free implied variance.

?An example of the potential sensitivity of Lin's parameter estimation is hinted at in her results; in particular,
stock index price jumps are associated with better pricing for short-dated contracts, whereas volatility jumps
are associated with better results for long-dated contracts. These differing results by time to expiration imply
parameter instability. Moreover, the parameter estimates are only updated once per month.

Interpreting the results in Lin is difficult. In Table I, a 15% volatility shows as 0.15. In Tables I and 1V, the
mean absolute pricing errors (MAE) range from 2.33 to 5.90. In addition, the results apparently are averages
of monthly results, with no information on the variability of the results. Such broad averages can be mis-
leading concerning the accuracy of a model.
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FIGURE 3
Mean reversion of VIX futures: response of futures to the spot VIX.

Jiang and Tian (2007) conclude that the CBOE procedures underestimate
(overestimate) true volatility when the underlying spot VIX is high (low). When
the true volatility is 20%, then the error averages less than three basis points.
For low volatility levels (10%) they find simulated differences of 19-25 basis
points. Most of the bias occurs due to the larger strike price intervals that exist
between options for farther out-of-the-money strikes. However, to the extent
that the bias is systematically present then the bias should not significantly
affect modeling the VIX process or the rankings of the models. More impor-
tantly, the Jiang and Tian simulations show that the biases are generally small
for typical characteristics of the underlying S&P 500 options.

Finally, the settlement bias due to the procedure used to determine the
settle price for the VIX futures is variable and can be large. Although the spot
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Jumps

VIX is determined based on the average of the bid and ask quotes of the rele-
vant out-of-the-money S&P 500 options, the settlement procedure employs the
actual trade prices of the nearby S&P 500 options at the opening on the futures
settlement day (for those options trading at the open). This variation from the
typical spot VIX calculation procedure is employed in order to reduce the risk
for dealers/arbitrageurs of VIX futures so that better pricing will occur in the
futures market during the life of the contract. Using opening option prices
causes the settlement VIX value to tend toward either the average bid or the
average ask price as VIX futures dealers unwind their strip of option positions.
However, the size and direction of the difference from the actual spot VIX is
uncertain and on average differs from the spot VIX by 0.26 index points ($260
per contract). The consequence of this bias is that the spot VIX and the VIX
futures do not converge at expiration.'' The market will therefore adjust for
this characteristic of the VIX futures and price this factor into the futures,
especially into the nearby expiration. Pavlova and Daigler (2008) discuss this
issue in detail.

in the VIX

A key issue when modeling the spot VIX index is whether the time-series
behavior of the VIX contains jumps, or whether the VIX is a continuous
process.'? Eraker, Johannes, and Polson (2003) provide evidence regarding the
presence of jumps for individual implied volatility strikes for the S&P 500 and
NASDAQ 100 index options by estimating jump-related parameters from
Markov Chain Monte Carlo methods; they show that jumps in underlying asset
volatility do impact option prices. Since jumps in volatility affect individual
option prices, they would directly affect the value of the VIX. Related work by
Bakshi and Cao (2004) shows that a model allowing for jumps in both the
returns and volatility of the underlying equity provides the best fit for the data,
as well as improving the equity option pricing performance relative to models
constraining volatility to a purely continuous mean-reverting diffusion process.
Similarly, Dotsis et al. (2007) show that jumps are important in capturing the
dynamics of the implied volatility index over time.

Empirically determining whether a given series is continuous or whether
it contains discrete jumps is a challenging endeavor. The distinction between
a continuous series and a series with jumps is a subtle one, since observed
data are essentially discrete and therefore are made up of a series of small jumps

""In addition, the reported spot VIX is based on a weighted average of two near-to-expiration S&P 500
options, whereas the VIX settlement employs only the next S&P 500 option expiration.

?In fact, the interest in jumps for financial markets has increased substantially in recent years, e.g. see
Duffie, Pan, and Singleton (2000), Pan (2002), Eraker et al. (2003), Eraker (2004), and Dotsis et al. (2007).
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(even when collected at high frequencies). Work in this area includes Wang
(1995), Ait-Sahalia (2002, 2004), Ait-Sahalia and Jacod (2009), Carr and Wu
(2003), Johannes (2004), and Johannes, Polson, and Stroud (2009). However,
the difficulty with the various methods and jump criteria derived in these arti-
cles is that they either require tests on the process using the options prices of
the underlying asset, or they need a pre-specification of the process itself in the
form of a stochastic differential equation. These requirements create difficul-
ties in our case, since only a short history of options on the VIX exists, and we
do not want to restrict the VIX process by defining a stochastic equation before
testing for jumps.

In order to disentangle jumps from a pre-specified diffusion process using
only spot VIX data, we implement a new statistical non-parametric model-free
test derived by Jiang and Oomen (2008). The methodology builds on another
model-free technique, the bi-power variation test of Barndorff-Nielsen and
Shephard (2006). We choose the Jiang and Oomen approach because their
methodology possesses a faster rate of convergence to its asymptotic distribu-
tion and is more powerful in detecting jumps relative to the Barndorff—Nielsen
and Shephard test. Moreover, the Jiang and Oomen test distinguishes between
jumps and continuous movements without the need for option prices or a pre-
specified stochastic process for the VIX itself.

The null hypothesis of the Jiang and Oomen test is that the sample path of
the process is continuous. The alternative hypothesis is that the path does con-
tain jumps. Identifying the correct hypothesis involves the computation of the
“Swap Variance Jump Ratio Test” statistic, defined by:

V(o,T>N<1 - RVW(T)) — N(0, m) (2)

SwVy(T)

with T = the number of days, M = the number of intervals within a day,
N = MT the total number of observations, and the remaining elements of

Equation (2) defined or estimated robustly by: o P ]
1 N Sl
(0,T) M% N -1 1:21 ‘r3,1+1 | ‘TB,J where lu’p \/7;
and 715, = In(VIX;) — In(VIX ;)
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The null hypothesis of a continuous sample path is rejected if the test sta-
tistic is significantly negative or positive, since the swap variance jump test is
two-sided. To calculate the test statistic we employ 5-minute VIX data ranging
from May 2002 to September 2006, setting T equal to 1 month (21 trading
days on average), and testing each month separately for the presence of jumps.
The number of intervals within a day, M, therefore is equal to 80 and the total
number of intervals N averages 21 X 80 or 1,680 per month. The time period
covered is chosen to match the time period used both for the estimation of the
parameters and for the pricing tests conducted later in the study. The jump test
statistic results in Table I show that the null hypothesis of continuous sample
paths (free of volatility jumps) is rejected for almost 90% of the cases. This
overwhelming presence of jumps leads us to conclude that the inclusion of a
jump component in the VIX model is warranted. Moreover, and relevant to
changes in volatility, the possibility of a large downside jump (crash) in stock
prices creates “fear” in traders’ mindsets. This fear of a negative jump in returns
is sufficient to increase option prices (especially in the put options skew) and
therefore the VIX value, although the historical experience of downside jumps
in returns is less than the model’s prediction of the actual probability of a jump in
the VIX. This fear has existed since the 1987 crash, increasing the implied
volatility smile for out-of-the-money puts. Since the new VIX includes all trad-
able out-of-the-money options, changes in fear levels would directly affect the
level of the VIX. Therefore, the perception of jumps can be an important factor
for option prices and the VIX;, supported by larger implied volatilities than real-
ized volatilities. This potential for an abrupt VIX increase, combined with our
swap variance jump ratio test results, warrants the inclusion of jumps as a fea-
ture of the VIX futures pricing model developed in the next section.

THE SPOT VIX PROCESS

A Model for the VIX Process

Developing a model to describe the evolution of the spot VIX over time is chal-
lenging, given the lack of understanding of how market participants fully
“value” the various factors affecting volatility (e.g. since the VIX is determined
from option values on the S&P500 index, the aggregate market’s perception of
future volatility levels affects the value of the VIX as well as how different S&P
500 strikes react to these perceptions). Therefore, we allow flexibility in the
evolution of the spot VIX process by incorporating the following features:
mean-reversion, CEV, and the potential for discontinuous jumps.

We propose the following class of processes to model the evolution of
changes in the spot VIX over time:
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dvt = (a — th)dt + O'V:/th + )/tdqt (4)

where V, represents the level of the VIX at time t, W, is the standard Brownian
motion, and y, is the jump size that would shift the VIX from V, to V, + y,
should a jump occur. The frequency of jumps is driven by a Poisson process
represented by g,, where the probability of a jump taking place between time ¢
and time t + dt is given by Adt. Therefore,

Prob[dq, = 1] = Adt
Probldgq, = 0] = 1 — Adt

(5)

Furthermore, we assume that the jump size y, is exponentially, identically, and
independently distributed as:

¥: ~ Exponential (u,)

where p is the mean size of the VIX jump distribution. Duffie et al. (2000), in
their analytical treatment of general affine jump-diffusion processes, note that
in order to preserve the positive nature of the volatility (or VIX), one must pre-
clude two-sided volatility jumps. The exponential distribution is well suited to
this task as well as constituting a fairly robust class of one-parameter distribu-
tions, despite its relative simplicity. In particular, actual market behavior shows
that market volatility easily jumps to higher levels during sudden market tur-
moil, whereas it typically declines more gradually when the market returns to a
normal state. The use of one-sided jumps is consistent with this stylized feature
of the market.

One line of research in the volatility literature focuses on finding and/or
incorporating factors that explain changes in volatility over time. An example of
an early work in this area is Franks and Schwartz (1991), who attempt to explain
changes in implied volatility with various economic variables. A more recent
article that specifically examines VIX modeling is Lu and Zhu (2010), who
examine the term structure of VIX futures contracts. They show that a log-linear
model, along with three underlying state variables, performs best for futures
pricing purposes.'® Another line of research focuses on the volatility process
directly, without necessarily investigating which underlying factors might be rel-
evant and/or without linking the volatility process to a market index.'*

3Other research examining factors affecting volatility (and examined in Lu and Zhu) includes Bollerslev and
Zhou (2002), Alizadeh, Brandt, and Diebold (2002), Chernov, Ghysels, Gallant, and Tauchen (2003),
Chacko and Viceira (2003), Zhang and Zhu (2006), Lin (2007), Christoffersen, Jacobs, Ornthanalai, and
Wang (2008), Li and Zhang (2008), and Egloff, Leippold, and Wu (2009).

A non-exhaustive list of research opting for this approach includes Grunbichler and Longstaff (1996),
Moraux, Navatte, and Villa (1999), Detemple and Osakwe (2000), Whaley (2000), Daouk and Guo (2004),
Brenner, Ou, and Zhang (2006), Dotsis et al., (2007), Huskaj and Nossman (2009), Chourdakis and Dotsis
(2009), and Mencia and Sentana (2009).

Journal of Futures Markets ~ DOI: 10.1002/fut



Volatility Futures Pricing Model 321

We employ the latter approach. Consequently, we model the volatility index as
a “reduced-form” statistic in the sense that additional hidden variables that
could be attributable to its evolution over time are neither searched for nor
specified; this approach is described in Dotsis et al. (2007). Whereas such a
modeling approach at first can seem incomplete relative to including potential
underlying volatility-driving factors, Bakshi, Cao, and Chen (1997), Dumas,
Fleming, and Whaley (1998), and Psychoyios and Skiadopoulos (2006), among
others, demonstrate that relatively basic models are able to deliver hedging
capabilities comparable to significantly more complex models. Additionally,
whereas identifying latent, underlying volatility-driving factors can have many
useful purposes, it can also make hedging more challenging. In particular, sta-
tistically identified factors are not tradable because they do not correspond to
any actual tradable asset; they can therefore make hedging a complex endeav-
or. For all these reasons we choose relative simplicity over complexity and
model the VIX dynamics directly.

We name the model in Equation (4) the mean-reverting constant elasticity
of variance with jumps model (CEV]). This general model essentially allows for
the modeling of mean reversion of the VIX, the presence of jumps in market
volatility, and a flexible diffusion component. This general model nests several
others. When y = 1/2 and A = 0 the model collapses to the well-known Cox
et al. (1985) term structure model (CIR) initially developed to model interest
rates and adapted by Grunbichler and Longstaff (1996) to model the VIX
process. The typical CIR model allows for mean reversion but not for jumps in
the process, and constrains the diffusion component to a square root process.
When A = 0 the model collapses to the mean-reverting CEV model, first pro-
posed by Chan, Karolyi, Longstaff, and Anthony (1992) to study the dynamics
of short-term interest rates. It is similar to the CIR model but offers added flex-
ibility in the diffusion component. Finally, when y = 1/2 the model becomes

the CIR model with Jumps (CIR]).

Estimating the Model

As a first step in our analysis we employ spot VIX index closings from April
2002 to September 2006 to estimate and compare the four potential models.
In a subsequent section we employ the complete dataset to examine the pricing
accuracy of the futures model. We estimate the parameters of the continuous-
time VIX process using Hansen’s (1982) Generalized Method of Moments
(GMM) as applied to the following discrete-time econometric specification:

Vt+l - Vt = (a - BVL)At + O-Vty \ Atft + )/tAQt (6)
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where &, is i.i.d. N(O, 1) and is uncorrelated with the discrete Poisson process
AQ,. We define 6 to be the parameter vector containing the six elements «, 3,
a?, v, u, and A. Given g, = V.., =V, = (a« — BV,)At, we compute six
moments of ¢,,, and condition on the volatility level, yielding the following vec-
tor of moment conditions:

81+| - I""\/\At
& — O'ZVZ“/At - 2/.L2)\At
t+l - 6“‘}/\At
T v 2 1
f(0) = E|8t+18t’ = (Vi V)Y At ® {V}
t

, r/6)\’
|‘°3L+1*‘3t3h||4/3 - (Vt+IVLVLI>47/30-4<At)2<22/3 )

I'1/2)
2 2
|8t+18t8t—18t—2‘ - (VH_lvtVt_th_z)yOA(ﬂ_At)

(7)

with E[f,(0)] = 0. The first three moments simply are developed from evaluat-
ing the expressions for E(g), E(¢®), and E(&*). The last three moment condi-
tions are specified to disentangle the conditional variance and jumps in the
spirit of Ait-Sahlia (2004). They are called bi-power variation, tri-power varia-
tion, and quadratic variation, respectively in Barndorff—Nielsen and Shephard
(2004, 2006). They are derived from theorems 1 and 2 of Barndorff—Nielsen
and Shephard (2004) and Equation (7) of Tauchen and Zhou (2010), whereby:

e ()

Therefore, we have u, = 2"2T'(1)/T3) = (2/7)'/? and Mgz = 221’1 (7/6)/
I'(3), allowing us to compute the following moments:

’8t+18t‘ = (Ml)z(vwlvt)ya'zAt
|8t+18t8t71‘4/3 = (,Uv4/3)3(vt+lvtvt71)4Y/30'4(At)2
|&1188-18-2] = (lu’l)4(vt+lvtvtflvt72)’yo-4

The theoretical expectation’s sample counterpart is g(0) =1/ TE ﬁ
with this expression theoretically converging to zero for an 1nﬁn1te sample size.
The parameter vector is chosen to minimize the quadratic form or J-statistic

Jr(0) = g' ()W (0)gr(0) (8)
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where W,(0) is a positive-definite symmetric weighting matrix. The optimal
weighting matrix is given by W..(8) = S7'(0), where S(8) = E[£,(0)f(0)], as
shown by Hansen (1982). To account for possible autocorrelation and het-
eroskedasticity, we use the Newey—West (1987) estimator with lags of up to
one-third of the length of the data. The minimized value of J(0) asymptotical-
ly follows a x? distribution with degrees of freedom equal to the number of
moments, net of the number of the parameters estimated. The y* statistic pro-
vides a goodness-of-fit test for the model estimated.

We perform criterion-difference D-tests to evaluate the performance of
the various nested models. The D-statistic is given by D = T[J}(0) — J*(6)]
and is analogous to a likelihood ratio test. It asymptotically follows a y? distri-
bution with degrees of freedom equal to the difference in the number of
parameters between the unrestricted and restricted models. J}(0) represents the
J-statistic of the unrestricted general CEV] model, and J%(0) represents
the J-statistic of the restricted alternative, both of which are estimated from the
minimized quadratic form. However, for purposes of conducting D-tests,
the restricted nested models must use the weighting matrix estimated from the
unrestricted model when computing the objective functions for both the unre-
stricted and restricted cases. The purpose of the D-test is to determine whether
fewer parameters in the model are justified, which is particularly important for
the jump component. In our tests the CEV] model (the most complete model)
is employed as the base case reference model, since CEV] is used as the “unre-
stricted” model, has the most parameters, and includes all parameters found in
the other models.

Results for the Spot VIX Model

Panel A of Table II reports the GMM estimates of the parameters and their
associated t-statistics for all of the discussed unrestricted and restricted models
for the dynamics of the VIX. The table also provides the relevant J-statistics and
their associated p-values to test the individual models. The J-statistics are x?
distributed, with the degrees of freedom equal to the number of moment con-
ditions net the number of parameters. In the GMM setting, a model is suc-
cessful if the overall model estimation yields a large p-value, since not rejecting
the null hypothesis that the moment conditions are equal to zero (on average)
means that the model is correctly specified. The CEV] model clearly displays
the highest level of performance, with a J statistic of 4.68 and a p-value
of 0.5855, followed by the CEV and CIR-] models, which yield J statistics of
14.16 and 13.99 and p-values of 0.0777 and 0.0513, respectively. The simplest
CIR model is rejected at a significance level of less than 1%.
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All estimates of the @ and B parameters are statistically significant. The
significance of the B parameter across all models is a strong indication of the
presence of mean-reversion in the spot VIX index. The conditional variance
of the spot VIX in our model is sensitive to the interaction between the CEV y
and the o? values, since the conditional variance at time t depends on both y and
o?. Moreover, the o parameter is significant in the CIR] and CIR models (with
v constrained to 0.5), since the constant o® must include most of the effect of
the conditional variance in order to compensate for the restriction on the vy
parameter. Conversely, the o parameter in the CEV] and CEV models (with
unconstrained CEV vy values) is insignificant, since the unconstrained CEV y
can capture significant percentage of the dynamics of the conditional variance.

Our estimates of the y parameter in the CEV] and CEV models are almost
identical, showing that the estimates of the CEV’s vy are independent from
whether or not jumps are included. This proves that we successfully disentan-
gled the conditional variance from the jumps by incorporating the bivariate
power variation through the last three GMM moment conditions. The estimate of
jump frequency A is not statistically significant, a finding consistent with the
volatility-jump literature and potentially due to the fact that the CEV already
allows for fairly rich dynamics on its own. However, the average jump size p,
and the jump intensity A become statistically significant in the CIR] estimation
when the CEV’s vy is restricted to 0.5. Intuitively, since the constrained CEV’s y
of no more than 0.5 is much less than the non-constrained estimated CEV’s
value of 1.6, the misspecification in the CIR] model forces part of the signifi-
cant conditional variation to be absorbed by the jump parameters.

Panel B of Table II computes GMM D-statistics in order to provide addi-
tional justification for the ranking of our models. In this table all D-statistics
are computed in relation to the CEV] unrestricted model, our most compre-
hensive model. When performing a D-test in GMM, the null hypothesis that
the restrictions on the parameters are “correct” is tested by calculating the dif-
ference in J-values between the restricted and unrestricted models, while using
the weighting matrix that comes from the unrestricted (CEV]) model in both
cases. The D-statistic is distributed as a y* value with degrees of freedom equal
to the number of restrictions that the restricted model imposes on the unre-
stricted model. The p-values obtained for each restricted model show whether
the corresponding restrictions are appropriate (if a p-value is greater than the
critical tail mass of 5%) or inappropriate (if a p-value is less than the critical tail
mass of 5%). The D-statistics reveal that the CEV model is a close second to
the CEV] model, as the p-value of 0.09 suggests that the null hypothesis of no
difference in performance between the CEV and CEV] models cannot
be rejected at the 5% significance level, although the null hypothesis can be
rejected at the 10% significance level. On the other hand, the CIR and CIR]
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models are rejected at the 5 and 1% significance levels, showing that the
restrictions associated with CIR modeling are strongly rejected.

In conclusion, Table II tells us that the unrestricted CEV] model empiri-
cally outperforms the restricted models, in particular outperforming the CIR
model proposed by Grunbichler and Longstaff (1996). Additionally, models
with an unconstrained exponent vy (the CEV] and CEV models) outperform
models with y constrained to 0.5 (the CIR] and CIR). The results show that
the spot VIX process is mean-reverting, sensitive to CEV, and potentially
affected by jump risk, depending on the model. Our general unrestricted spec-
ification encompasses all of these unique features and is the model that per-
forms best for the in—sample data. We now examine the pricing of the VIX
futures contract and testing the “out-of-sample” performance of the four mod-
els for pricing actual VIX futures contracts.

PRICING THE VIX FUTURES CONTRACT

We show in the previous section how alternative stochastic models can perform
differently in their attempt to capture the dynamics of the spot VIX index. We
now compare the pricing performance of these models using VIX futures data.
First, we derive the expected VIX futures price for the general class of CEV]
models employed here. Second, we discuss the properties of these related the-
oretical prices. Finally, we empirically examine the performance of these alter-
native models in the pricing of VIX futures. Of course, any such test jointly
examines the pricing ability of the model in conjunction with any mispricing of
the VIX futures by market participants.

The VIX Futures Model

Our model to price VIX futures includes the mean-reversion characteristic of
the VIX, jumps (for two of the four models), Brownian motion associated with
random changes in the VIX, and the time to (futures) expiration. Therefore, the
model is more complete than the current models in the literature attempting
to price volatility futures (with the possible exception of Lin, 2007). In order to
develop the VIX futures model let F(V,, t, T) denote the price of a futures con-
tract expiring at time T on the underlying spot VIX price V, at time t. Following
Grunbichler and Longstaff (1996), we use the futures price as the expected
value of the spot VIX price V, at time T, under the risk-neutral measure Q:

F(V,t,T) = E9[Vq] (9)

Based on our specification of the spot VIX process, we show in the appen-
dix that for our most general CEV] model Equation (9) implies a VIX futures
price of:
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o+ pA

5 (1 — e PT1)y, (10)

F(V,t,T) = V,e P17 4

We take advantage of a result established in Henderson et al. (2004),
Daouk and Guo (2004), Psychoyios and Skiadopoulos (2006), and Dotsis et al.
(2007) to deal with the risk premium issue. These authors show that model
rankings do not depend on the magnitude of the volatility risk premium, since
model prices are a monotonic function of the price of risk. In particular,
Henderson et al. (2004) show that the prices of European call and put options
are a monotonically decreasing function of the price of volatility risk when a
fairly general stochastic volatility model setup is employed. More specifically,
Daouk and Guo (2004) compare volatility options pricing performance using
various types of GARCH models, as well as providing a comparison with the
Grunbichler and Longstaff (1996) model, while assuming that volatility risk is
not priced. In the process, they also test whether the presence of the volatility
risk premium (or lack thereof) affects their results. They find that their model
comparison is not affected by their choice of the volatility risk premium, even
for a wide range of risk premium values. Psychoyios and Skiadopoulos (2006)
study whether volatility options are superior to standard options when trying to
hedge volatility risk, as well as investigate the pricing and hedging performance
of several volatility option pricing models. Similar to Daouk and Guo (2004),
they also assume away the price of volatility risk, as well as test whether their
results would differ due to the “injection” of volatility risk into the volatility
parameter. They conclude that the order of the performance of their compared
models is not perturbed by the presence of a volatility risk premium. Dotsis et al.
(2007) estimate and compare the pricing performance of various diffusion
processes aimed at capturing the dynamics of volatility indices over time. In the
vein of Daouk and Guo (2004), as well as Psychoyios and Skiadopoulos (2006),
Dotsis et al. (2007) set the volatility risk premium equal to zero in their calibration
exercise. They confirm the robustness of their results to the choice of different
levels of the volatility risk premium by examining the pricing errors calculated for
a wide range of the volatility risk premia, concluding that the rankings of the
processes do not depend on the chosen risk premium level. Finally, in our model
the volatility risk premium would “enter” via the B parameter. From Equation
(10) it is fairly straightforward to conclude, everything else held constant, that
different risk premium levels would simply monotonically affect the predicted
futures price of the model. Therefore, for purposes of ranking models and their
respective features, we set the volatility price of risk equal to zero.

As with the spot models, when y = 1/2 and A = 0, the above model
becomes the CIR model; when A = 0 the model is the mean-reverting CEV
model, and when y = 1/2 the model becomes the CIR model with Jumps
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(CIR])." Note that the y parameter disappears as it is eliminated when the
expectation is taken in the derivation of the formula.

The formula for the VIX futures is similar in structure to the models
described in Grunbichler and Longstaff (1996) and in Dotsis et al. (2007), but
our model includes both a jump and a CEV feature. Some of the properties
of the theoretical futures price stemming from these models are similar.
However, the estimation of the spot VIX process is sensitive to the uncon-
strained CEV 7y and the presence of a jump. For instance, the estimated values
of @ and the speed-of-mean-reversion parameter 8 decline significantly when
moving from the CEV] to the CEV model. Consequently, there are important
fundamental differences among these various specifications.

Results for VIX Futures Pricing

We estimate the conditional parameters for each of our four models using the
generalized method of moments procedure described previously by separately
employing the last two years of spot VIX data prior to the date of each day’s esti-
mation in order to determine the model parameters. Thus, the model is re-
estimated each day using a new set of input values (the oldest one day of data is
replaced with the most recent day’s data). The resultant estimated parameters
using data prior to day t — 1 are then employed in combination with the cur-
rent value of the VIX to determine the fair VIX futures price. Actual futures prices
are compared to the estimated fair futures price from the model for the period
March 29, 2004 to September 12, 2006.'® We then calculate the signed per-
centage error (SPE) and the absolute percentage error (APE) between the
actual futures price and the modeled fair futures price for each daily futures
forecast and for each futures expiration. The APE is calculated as follows:
‘ft B F(Vw t T)‘

APE = . 11
F(V,1,T) (1

The SPE is equivalent to the APE, except that one removes the absolute
value restriction. Errors are determined in basis points of the VIX (one basis
point is worth $10 per futures contract). Finally, we compare the alternative
models’ performance in terms of the MSPE and the MAPE and their basis
point equivalents.

Panel A of Table III provides the MSPE and MAPE results for each of the
four models for each futures expiration from May 2004 to September 2006,

">The first stage model of the evolution of the VIX over time does not provide an estimate of the current value
of the VIX. Therefore, the current value of the spot VIX is used as the current expected value of the VIX.
'Both the spot VIX and VIX futures “trade” until 4:15, eliminating any timing issues.
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segregated by the number of days until futures expiration. The table also shows
the standard deviations for the MSPE and MAPE. The results are dominated
by the CEV model (without jumps), which has the lowest MSPE and MAPE
values across the differing ranges of days until expiration categories. Panel A
shows that the CEV model’s average signed error is typically below 2%, with
errors hovering around 1% for 16—60 days until futures expiration.'” The CIR
model is consistently second, with the jump models providing larger errors.

The absolute errors in Table III are larger, but the CEV model still domi-
nates. The larger increase in the size of the percentage errors from MSPE to
MAPE for the CEV model shows that the CEV model’s errors are more consis-
tently distributed around zero, while the other models tend to be consistently
positive. The CEV model’s distribution is consistent with a model employed by
market participants. The standard deviations of the errors are also smaller for
the CEV model compared to the other models.'® Therefore, these results show
that more complicated models under-perform relative to simpler models for
out-of-sample data, in spite of better in-sample accuracy. Specifically, our
results demonstrate the superiority of the CEV model over the CEV] model,
even though the J- and D-test results from the previous section show the CEV]
model to be superior to or statistically equivalent to the in-sample results.
Thus, these out-of-sample results show the somewhat surprising lack of impor-
tance or sensitivity of the model to the jump parameter when actual futures
pricing is employed. However, the J and D tests do perform a type of “best-fit”
bias in its evaluation, whereas the market results provide an “out-of-sample
test” of the model. These results contradict Lin (2007), where jump models
provide the best results and the best model varies by the time to futures
expiration.

Panel B of Table III shows the equivalent errors from Panel A in basis
points (1 basis point is 0.01 of a VIX index point). These results give dollar
equivalent errors not scaled by the size of the VIX. The CEV signed basis point
errors are 3.46—12.21 for 1660 days until futures expiration, a very small
error, which would be similar to the typical bid—ask spread for the futures con-
tract. The signed basis point errors for the other models are much larger.
However, the absolute basis point errors are much larger, i.e. over 42 basis
points for all time ranges until futures expiration.

Table III provides only average errors over all of the futures expirations.
Figure 4 shows the size of the MSPEs for each separate expiration for all four

"The larger average percentage error for the 1-15 days until futures expiration for the CEV model is most
likely due to the futures settlement procedure and its resultant bias, as previously discussed.

'8In order to examine the effect of liquidity, the analysis was repeated using the settlement futures prices,
which circumvents adverse effects due to stale trading. The results were comparable to the closing value
model results presented here.
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FIGURE 4
Comparison of VIX futures models.

models, using the 16—30 days until futures expiration category. Figure 4 shows
that the CEV model consistently has the lowest percentage errors when the
errors are positive, but often has larger negative errors when they occur. From
month-to-month the tendency is for the models to cluster near a similar level of
percentage error, suggesting that the errors may be associated more with how
futures are priced than with differences between the models.

The futures pricing performance of our parsimonious model compares
favorably with studies that showcase more complex specifications. For example,
Lu and Zhu (2010) show that a log-linear model with three underlying state
variables performs best for futures pricing purposes. Their in-sample percent-
age pricing errors (shown on a graph) vary between approximately —3% and
+4% for their best model. Our CEV model’s out-of-sample mean APEs vary
from approximately +3% and +5%.'" Lin’s (2007) complex VIX futures pricing
formula displays out-of-sample percentage pricing errors ranging from nearly
—7% to +2%, depending on the model used, which typically indicates an over-
pricing fit for the VIX futures. Zhang and Zhu (2006) report out-of-sample per-
centage pricing errors ranging from +2% to +44%, whereas Dotsis et al.
(2007) report mean squared percentage pricing errors ranging from 0.01 to
0.29, translating roughly into mean APEs from +7% to +53%.

Figure 5 shows the percentage errors for the superior CEV model for dif-
fering times to futures expiration for each trading month. While variability does
exist in the errors shown in Figure 5, there is a general tendency for the errors
to cluster by the trading month, showing that unique factors relating to pricing
for given expiration months influence the size of the errors. Moreover, there is
a tendency for the errors to be similar for adjacent months. Therefore, the level

YLu and Zhu'’s out-of-sample performance only encompasses several days of data and is not in percentage
form, making direct comparison impossible.
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Comparing the VIX models by day to futures expiration.

of the VIX could be a factor affecting the size of the errors. Consequently, the
results in Figures 4 and 5 suggest that all stochastic volatility models could be
missing an important factor, or the models possess a bias in estimating
the model’s parameters.

Figure 6 shows the percentage errors for each model by day until futures
expiration. Again, the CEV model is consistently the best model across time
to expiration, with the CEV] having much larger errors than the other models
for most of the days until expiration.

Overall, the results show that the CEV model is consistently superior to
the other models in pricing actual VIX futures, whether examined by mean
signed or APEs, basis point errors, time to futures expiration, or expiration
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month. In Dotsis et al. (2007) the geometric Brownian motion specification
outperforms the square root specification, showing that a model with a vy
parameter set to 1 is superior to a model with a y parameter set to 1/2. As seen
earlier, our CEV model actually allows y to be unrestricted; when estimated y
is near 1.6, which implies that the VIX process “needs” the less restrictive CEV
feature for the futures model to perform the best.

Examining the Model vs. Market Differences

In this section we examine the factors that affect the differences between the
model values and the actual VIX futures market values. The regression of the
differences between model and market prices on these factors is:

M(t) — Pp(t) = a, + az\/% + aylog(Pp(t)) + a4 100(PR(t) — P(t))/Po(t)

+ aslog(V,) + ag100(P.(t) — Po(t — 1))/Pe(t — 1) (12)

where M(t) = the model’s value at time ¢, P.(t) = the price of the VIX futures
at time t, P(t) = the spot VIX value at time ¢, T = the time to futures expira-
tion in terms of a fraction of a year, and V, = volume of the futures contract at
time t. The reasoning for including each of these variables is as follows:

¢ Time to futures expiration T: examines whether the model incorporates the
time to expiration in the same way as does the market.

e Level of the futures price Py(t): a higher VIX futures value reflects more
volatility and uncertainty in the market (the volatility of volatility), which
could be valued differently than a low level of the VIX futures.

¢ Difference between the futures and spot VIX values (Pp(t) — P(t))/P(t):
shows the extent that the spot VIX differs from the mean-reverting estimate
given by the VIX futures value.

® Volume V,: the size of the volume provides a measure of the liquidity in the
market.

¢ Change in the spot VIX (P.(t) — P.(t))/P.(t): the percentage change in the
spot VIX is a measure of jumps in the VIX.

Table IV provides the results of the regression explained above. These
results could be employed to adjust the estimation of the model, if the goal is to
bring the model’s prices closer to the market. The R? in the table are significant
and large for all four models, with the CEV] model possessing the largest R*
value. Time to futures expiration and the level of the VIX futures price are not
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TABLE IV
Factors Affecting the Difference Between the Model and Market Values

CEV] CEV CIR CIRJ

Intercept 62.335 95.724 110.870 82.122
17.29 29.16 29.89 19.86

Time 0.021 0.031 0.039 0.013
1.19 1.91 2.16 0.63

Level VIX Futures 0.326 0.177 0.148 0.283
212 1.27 0.94 1.60

Difference Futures minus Spot VIX —0.462 -0.291 -0.223 —0.292
—-32.38 —22.38 —15.22 —-17.85

Level of Volume —13.209 —19.275 —22.163 —16.360
-18.11 —29.01 —29.52 —-19.55

Difference VIX(t) — VIX(t—1) 1.991 0.644 0.737 0.900
55.51 19.72 19.97 21.87

R (%) 61.6 451 38.3 29.7

This table shows the results of regressions of Model vs. Market differences on time to expiration, the level of the VIX futures price, the
percentage difference between the futures and spot VIX values, the level of volume (liquidity), and the percentage difference between
the time tand time t — 1 values in the spot VIX (jumps). The equation estimated on the model vs. market differences for each of the
four models examined in this study is M(t) — P.(t) = a, + az\/t+ as log(Pg(t)) + a,100(P:(t) — Po(t))/P(t) + ag log(V,) +
a; 100(P(t) — Pt — 1))/P(t — 1), where t = time to futures expiration in a fraction of a year. The first line for each variable is the
coefficient value and the second line is the t-value; significant t-values at the 5% level are shown in bold.

significant for any of the models. The relevance of the remaining three vari-
ables is described as follows:

¢ The difference between the futures and spot VIX values shows that the mean-

reverting characteristic of the VIX is valued differently in the market com-
pared to the models given here. The models employ historical means of the
VIX to determine the mean-reverting value, while the market would naturally
use its estimate of the appropriate current average value. During most of
the time period of this study the spot VIX is below the long-run average for the
VIX. Therefore, when there is a long time to futures expiration, the futures
contract is much higher than the spot VIX, which is associated with larger
negative values in the model vs. market values. Consequently, the negative
coefficient is consistent with the model underpricing the longer-term effect of
the mean-reverting component relative to how the market prices this factor.

The significance of the volume variable is associated with the liquidity of the
VIX futures contract, especially for the more deferred contracts with a longer
time to expiration. A larger volume variable is associated with a model value
that is farther below the market value of the futures. Conversely, deferred
contracts with lower volume generally fluctuate less in price, negating the
effect of a low volume.
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¢ The larger the percentage change in the spot VIX (with large changes con-
sidered to be a proxy for jumps), the greater the model value is above the
futures price. This variable possesses the largest t-value for the CEV] (jump)
model. Thus, the model values jump to be more important for the VIX
futures price than does the market. This result could be associated with the
lower spot VIX value for most of this period, i.e. less concern in the stock
market for a “crash event.”

SUMMARY AND CONCLUSIONS

Volatility derivatives are a new class of assets that have received considerable
interest in the industry, but only limited interest in academic research. In fact,
the volume of exchange-traded and over-the-counter volatility derivatives has
continued to grow over time. Volatility derivatives provide the opportunity to
speculate and hedge risks that are difficult to duplicate in existing instruments,
even options. One problem with research into volatility derivatives is the lack of
comprehensive and accurate models to value these derivatives.

This study develops and tests a comprehensive model to price VIX futures
contracts. The model is separated into four sub-models, the CEV model and
the Cox—Ingersoll-Ross (CIR) model, both with and without jump compo-
nents. The CEV model is the model that best prices actual futures values,
regardless of time to futures expiration or contract month. Examination of the
differences between the model and market prices find that variables represent-
ing mean reversion, liquidity, and jumps all affect these differences. Further
research in this area should consider these factors, as well as whether the
model needs improvement or whether the market is “wrong” in its valuation
procedures.

The results from this study leave some intriguing questions. For example,
is the VIX futures model efficient in its pricing across trades? Can one earn
profits from using the model to decide when to buy and sell VIX futures? Are
the differences between the model and market prices due to an incomplete
model, model calibration problems, or mispriced futures contracts? Further
research into volatility derivatives could provide further insights to these
questions.

APPENDIX: PROOF OF THE VIX FUTURES
PRICING FORMUILA

Let the risk-neutral process for the volatility be defined as:

th = (a - :th)dt + dewt + Ytdqt (Al)
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The integral form of Equation (Al) is
t t t
V,=V, + J (¢ — BV,)du + O'J VidW, + Jyudqu (A2)
0 0 0

Taking expectations and using the properties of the jump distribution, we
obtain

E(\V,) =V, + J [ — BE(V,)]du + J/.L/\du (A3)
0 0

Differentiating (A3) with respect to time provides

dE(V,)
= BE(V,) + (A9)
Noticing that
d dE(V,)
Bt — LBt + L
e EV)] = e BE(V) o (A5)
We can see that
d
E[eBtE(Vt)] = eP(a + pA) (A6)
Finally, integrating and solving for E(V,) produces the desired result:
(ot pA) _
E(V,)=Ve P+ —71-e") O

B
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