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This article implements a currency option pricing model for the general
case of stochastic volatility, stochastic interest rates, and jumps in an
attempt to reconcile levels of risk-neutral skewness and kurtosis with
observed option prices on the Japanese yen and to analyze the information
content of the cross section of option prices by investigating the hedging
and pricing performance of various currency option pricing models. The
study makes use of both a method of moments and a more traditional
generalized-least-squares (GLS) estimation technique, taking advantage of
the fact that methods of moments do not specifically require the use of
cross-sectional option prices, whereas GLS does. Results centered around
the Asia economic crisis of 1997 and 1998 indicate that the cross section
of option prices surprisingly does not appear to contain superior informa-
tion as the two estimation techniques yield relatively similar results once
idiosyncratic differences between them are acknowledged. Extensions of
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the G. Bakshi, C. Cao, and Z. Chen (1997) results to currencies are also
provided. © 2006 Wiley Periodicals, Inc. Jrl Fut Mark 26:33–59, 2006

INTRODUCTION

Varying degrees of skewness and kurtosis present in a security’s distribu-
tion of returns are known to affect the price of an option written on that
security, as modeled by Bakshi, Cao, and Chen (1997); Bates (2000);
Duffie, Pan, and Singleton (2000); or Pan (2002) and formalized more
recently by Bakshi, Kapadia, and Madan (2003). By deriving and imple-
menting in this article a general option-pricing model allowing for
stochastic volatility, jumps, and stochastic interest rates in the case of a
currency, pricing implications on Japanese yen options as well as the
value of the information content of the cross section of option prices
are investigated for purposes of parameter estimation, pricing, and hedg-
ing. Although it is accepted that incorporating stochastic volatility and
return jumps in option pricing models reduces hedging and pricing
errors—as demonstrated by Bakshi et al. (1997), Bates (2000), and Pan
(2002)—and that incorporating volatility jumps provides a better fit
yet—as shown by Eraker, Johannes, and Polson (2003) and Bakshi and
Cao (2004)—it is, however, less established what parameter-estimation
techniques and option data sets are the most relevant for the calibration
of complex options models and the subsequent pricing and hedging with
these models. This study is an attempt to determine the value of the
information content of the cross section of option prices by implement-
ing two estimation techniques that make use of radically different
information sets. By using options on the Japanese yen, the study also
extends Bakshi, Cao, and Chen (1997) results on equity options to the
case of a currency.

When dealing with the estimation of parameters associated with
option-pricing models, two important classes of estimation methods are
found in the literature: moment-based methods and least-squares mini-
mization techniques. These two classes vary considerably in nature.
Moment-based methods usually do not make use of the whole cross-
sectional data set of options available, but estimate parameters in a time-
series fashion by relying on incorporating the dynamics of the specified
process in the estimation itself. Least-squares minimization procedures
instead estimate parameters by using the full cross section of option
prices at a given point in time, thereby ensuring a good fit at that date
but somewhat preventing forecasting more than one period ahead as the
dynamics of the process are not part of the estimation. For purposes of
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this study, one estimation technique from each class is selected in an
attempt to determine whether one class fares better in terms of parame-
ter estimation and subsequent option pricing and hedging abilities. The
moment-based method selected is the Pan (2002) implied-state general-
ized method of moments (IS-GMM), to be compared against a more
traditional generalized-least-squares (GLS) estimation as seen in Bates
(1996); Bakshi et al. (1997); and Dumas, Fleming, and Whaley (1998)
to only name a few.

The generalized-least-squares estimation methodology involving
minimizing a sum of squared errors over an option data set cross sec-
tionally is relatively simple to implement and is therefore used by
academics and practitioners alike, as seen in Bates (1996); Bakshi et al.
(1997); or Dumas, Fleming, and Whaley (1998). The GLS estimation is
generally performed daily with parameters obtained by averaging the
results over the sample period. This methodology explores the informa-
tion in the cross section of option prices. The second estimation
technique implemented, the implied-state generalized method of
moments of Pan (2002), allows for a latent variable such as the volatility
to be inferred from the data given the value of the parameters being esti-
mated. IS-GMM investigates the time series properties of the data hold-
ing the parameters fixed over time. The estimation is also only making
use of at-the-money options data. It thus uses a different data set than
the generalized-least-squares procedure, because the GLS estimation
makes use of the full cross sectional data set. It is also important to
note that the implied-state GMM technique is computer intensive.
Although GLS relies on a nonlinear least-squares minimization approach,
IS-GMM derives an implied-volatility time series at each loop of the esti-
mation, a time-consuming exercise. The mathematical derivation of the
various moments can be tedious as well. One may ask whether the bene-
fit of IS-GMM truly warrants the added computational costs.

This study also tests whether results by Bakshi et al. (1997) hold for
a currency. An important difference between a currency and an equity
security is the fact that although both currencies and stocks depend on a
myriad of financial and economic factors, a currency’s “natural” path can
be altered through the use of government intervention. Central banks
are known to employ foreign-exchange reserves and fiscal and monetary
policies as a means of influencing the currency’s price. Hence even a so-
called free-floating currency often goes through managed regimes where
the currency is not only the product of various macroeconomic factors
but also the result of a government’s actions. This begs the question of
whether a currency is thus fundamentally different from a stock or an
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equity index and whether its inner structure differs significantly from
that of a stock, particularly in times of crisis when the government is
likely to intervene. The answer to this question has important implica-
tions regarding the hedging of foreign-exchange risk by firms as well as
the pricing of derivatives allowing this hedging.

Results by Duffie et al. (2000) on affine processes can be used
to produce a closed-form currency option-pricing model featuring sto-
chastic volatility, stochastic interest rates, and jumps with all features
embedded in one general model. This solution allows for convenient
comparison of several submodels nested within one another and thus for
the implementation of a study on currency options in the spirit of Bakshi
et al. (1997) equity option study. Because currencies are governed by a
somewhat different set of dynamics than equities, establishing whether
results for options on an equity index also hold for options on a currency
is important. The currency selected is the Japanese yen, and the period
studied is from 1996 to 1999, a window of time surrounding the Asian
economic crisis of 1997 along with known central bank interventions.

The models considered in this study are the Black-Scholes model
(Black & Scholes, 1973), the stochastic-volatility model, the stochastic-
volatility and stochastic interest-rates model, and finally the stochastic
volatility with jumps model. Henceforth these models will be referred to
as BS, SV, SVSI, and SVJ, respectively. General findings in this study are
first that the Bakshi et al. (1997) results for equity options do hold over-
all for a currency. The stochastic volatility feature provides the largest
incremental pricing and hedging improvement over the Black-Scholes
benchmark. Including jumps into the model does improve the fit in
terms of pricing or implied volatility smile, but contributes little in terms
of hedging. Finally, the stochastic interest-rates feature improves the
pricing only in the case of in-the-money long-term options, whereas its
effect is insignificant in the hedging exercise. Perhaps more surprisingly,
the IS-GMM and GLS estimation methods seem to yield pricing and
hedging results of comparable levels. The IS-GMM estimation actually
produces slightly poorer fits and hedging errors, and although it might
thus be tempting to conclude that the information contained in the cross
section of option prices—used by GLS and not by IS-GMM—is valuable,
this apparent slight superiority is actually marginal and most likely
the result of the recalibration of parameters granted to GLS whereas the
IS-GMM parameters remain unchanged. The somewhat surprising
conclusion is thus that the information contained in the cross section of
option prices does not seem to be of the highest importance for purposes
of pricing and hedging.
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The rest of the article proceeds as follows. Next the model and the
solution to the pricing problem are given. Then the options data on the
Japanese yen are described. In the following sections the two estimation
techniques implemented in the article are presented, results from the
estimation of the parameters and pricing exercises are described, and
the hedging abilities of the models are presented. Finally, a conclusion
is given.

THE MODEL

The spot value for the currency is denoted by S(t) and is assumed to fol-
low a mixed jump-diffusion process with stochastic volatility. The domes-
tic and foreign instantaneous risk-free rates are denoted by R(t) and
Rf (t), and are assumed to follow a Cox, Ingersoll, and Ross (1985)
process. The source of Brownian risk associated with the currency is
denoted by dvS(t), a standard Brownian motion. The instantaneous
volatility of the currency process is denoted by V(t) and is also assumed
to follow a Cox et al. (1985) type of motion, with its Brownian source of
risk correlated with the currency returns’ diffusion component. The
assumptions of Bakshi et al. (1997) are adapted to the case of currency
options and the data-generating processes under the risk-neutral proba-
bility measure Q are thus assumed to follow:

(1)

(2)

(3)

(4)

with Covt(dvS(t), dvV(t)) � r dt and where

R(t) and Rf(t) are the time-t instantaneous domestic and foreign interest
rates.

V(t) is the diffusion component of return variance, conditional on no jump.

l is the frequency of jumps per year and J(t) is the percentage jump size
conditional on a jump occurring assumed to be lognormally, identi-
cally, and independently distributed over time, with unconditional
mean mJ. Conditional on a jump, the spot value of the currency
instantly goes from S to S[1 � J(t)].

dRf(t) � [uRf
� kRf

Rf(t)]dt � sRf
2Rf(t) dvRf

(t)

dR(t) � [uR � kRR(t)]dt � sR2R(t) dvR(t)

dV(t) � [uV � kVV(t)]dt �  sV2V(t) dvV(t)

dS(t) � S(t)[R(t) � Rf(t) � lmJ] dt � S(t)2V(t) dvS(t) � S(t)J(t) dq(t)
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The binary variable q(t) is a Poisson jump counter with intensity l with

Pr{dq(t) � 1} � l dt and Pr{dq(t) � 0} � 1 � l dt

The parameters kV, uV�kV, and sV are, respectively, the speed of
adjustment, long-run mean, and variation coefficient of the diffusion
volatility V(t). The variables q(t) and J(t) are uncorrelated with each
other or with the Brownian motions. The solution shown below stems
from the work of Duffie et al. (2000) on affine jump transforms and is
stated for the most general case: stochastic volatility, stochastic interest
rates, and jumps, as found in Pan (2002). The various nested models
subsequently compared are Black-Scholes (BS), stochastic volatility (SV),
stochastic volatility and stochastic interest rates (SVSI), and stochastic
volatility with jumps (SVJ).

The call option price can be derived as

C(St, K, T) � P1 � KP2 (5)

where

(6)  

(7)

where details can be found in Pan (2002).

DATA DESCRIPTION

This study uses daily prices for European and American currency
call options written on the Japanese yen from March 29, 1996 to
December 31, 1999 traded on the Philadelphia exchange. An important
advantage of the Philadelphia exchange is that the currency spot and
option price are simultaneously recorded, eliminating any synchronicity
issues that may arise with OTC data. One drawback, however, is that
options traded on the exchange are not as liquid as OTC records. In
order to minimize this issue, both European options and American
options are used in the sample.

c(u, x, t, T ) � EQ
t aexp c��

T

t

R(Xs) ds d  exp(u # XT)b � exp[a(t) � b(t) # x]

P2 �
c(0, Xt, 0, T)

2
�

1
p �

�

0

 
Im[c(�iv, Xt, 0, T)eiv ln K]

v  dv

P1 �
c(1, Xt, 0, T)

2
�

1
p �

�

0

 
Im[c(1 � iv, Xt, 0, T)eiv ln K]

v  dv
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When the foreign risk-free rate is significantly lower than the
domestic risk-free rate, an American call option on the currency has
approximately the same value as a European call option on that same
currency. In the case of the Japanese yen, the interest-rate differential is
high. This allows the inclusion of both American and European call
options, increasing the sample size and the reliability of the results. Note
that this approximation would not hold in the case of put options, as put
options may be exercised at low moneyness levels; thus put options are
not included in this study. American options constitute 75% of the
sample against 25% for European options. It is therefore obvious that
the inclusion of American options in the study is paramount to the relia-
bility of the results. To obtain an estimate of the size of the errors associ-
ated with including American call options in the sample, the theoretical
percentage price differences between American and European options
are computed. The variables S, R, Rf, and V are assigned their sample
average, and K and t are given a series of values yielding a grid of various
moneyness and time-to-maturity categories. The theoretical errors asso-
ciated with including American options in the sample are summarized by
moneyness and maturity in Table I.

Table I demonstrates that given the high interest-rate differential,
the pricing error due to the inclusion of American options is never more
than 0.011%. The results in this article should therefore not be biased
by the approximation.

The data set is then placed through a series of filters. Options with
maturity less than 12 days are discarded to avoid near-maturity pricing

TABLE I

Summary Statistics on Theoretical Approximation Errors

Days to expiration

S�K �60 60–180

�0.94 .0113% .0037%
0.94–0.97 .0112% .0068%
0.97–1.00 .0098% .0080%
1.00–1.03 .0023% .0020%
�1.03 .0010 % .0007%

Note. Theoretical differences in prices between American and European options of
the same strike and maturity are computed and expressed as a percentage of the
American option price. The spot, domestic rate, foreign rate, and volatility variables
S, R, Rf, and V are assigned their sample average, and the exercise price and time-
to-maturity K and t are given a series of values yielding a grid of various moneyness
and time-to-maturity categories. Errors associated with including American options in
the sample are summarized by moneyness and maturity.
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anomalies. Options violating the European boundary condition are
discarded, as well as options with prices lower than 0.0000002 cents.
These criteria removed 63 options, leaving a total of 11,109 call options
for the April 1996–December 1999 period. Finally, options whose matu-
rity exceeds 180 days are removed for lack of liquidity in this category.
The final total number of options remaining is 9,806.

Figure 1 describes the objective distribution of returns on the
Japanese yen, indicating a degree of positive skewness and large levels of
kurtosis. The distribution thus displays fat tails, but is fairly symmetric,
as is often the case with objective distributions.

A brief description of risk-neutral distributional properties is war-
ranted as well. To obtain the levels of risk-neutral skewness and kurtosis,
the methodology described in Bakshi et al. (2003) with the third and
fourth moments spanned by using out-of-the-money calls and puts is
adopted. The levels of risk-neutral skewness and kurtosis can be signifi-
cantly different from their objective counterparts. Bakshi et al. (2003)

FIGURE 1
Distribution of daily rates of return on the Japanese yen. Actual daily continuously

compounded rates of return on the Japanese yen are plotted in a histogram, whereas 
a normal distribution exhibiting identical first and second moments is plotted as a 

smooth line in order to demonstrate the contrast between the two. The distribution 
of the actual rates of return exhibits both skewness and kurtosis.
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show that risk-aversion causes the risk-neutral density to have a negative
skew provided that the kurtosis of the physical distribution is more than
3, that a negative skew in the physical distribution will also create a left
skew in the risk-neutral distribution, and finally that the higher the phys-
ical measure level of kurtosis, the deeper the left skew in the risk-neutral
distribution. Attention is restricted to short-term options, and risk-
neutral levels of skewness and kurtosis of �0.39 and 6.54, respectively,
are obtained. These risk-neutral moments are indeed different from their
physical counterparts, and it is important to note that despite the posi-
tive physical skewness of the objective distribution, negative levels of
risk-neutral skewness are observed, most likely the result of high physi-
cal kurtosis and risk aversion.

The option-pricing model on the FX market will attempt to incorpo-
rate these risk-neutral levels of skewness and kurtosis through features
such as stochastic volatility and jumps. In a stochastic-volatility model,
the volatility variation controls the kurtosis of the spot return, and the
correlation between the volatility and spot returns produces skewness.
Jumps can also model skewness and fat tails, although one should note
that stochastic volatility and jump-diffusion components incorporate
skewness and kurtosis in the underlying security distribution differently:
the effects of jump diffusion are short term (3 months or less), whereas
the effects of stochastic volatility are long term.

Before describing the estimation procedures, a description of how
much the Black-Scholes model misprices the options is in order. The
way this is shown is by backing out the Black-Scholes implied volatility
for each option price in the sample and equally weighting the implied
volatilities of all call options in each given moneyness-maturity class,
yielding a matrix of average implied volatilities with values reported
in Table II along with the number of options in each category. Table III
reports average call prices in cents along with average trade size in each
category.

Table II is graphically translated in Figure 2, where it can be seen
that the Black-Scholes implied volatility exhibits a very strong U-shape
or volatility smile as the call option goes from being deep in-the-money
to deep out-of-the money. The smile is most pronounced for short-term
options, that is, options with a maturity of less than 60 days. The short-
term options thus seem to be the most mispriced, as also found by
Bakshi et al. (1997) in the case of S&P 500 index options.

The main challenge faced by option pricing models is therefore to
explain the behavior of short-term deep out-of-the-money and short-term
deep in-the-money call options, as they appear to be the most mispriced
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TABLE II

Implied Volatility and Number of Options 
by Moneyness and Maturity

Call options
April 1996–December 1999

days to expiration

S�K �60 60–180

�0.94 19.03 15.12
{204} {895}

0.94–0.97 14.04 13.69
{958} {1436}

0.97–1.00 11.64 12.45
{2926} {1184}

1.00–1.03 11.92 13.14
{908} {549}

�1.03 20.53 16.47
{374} {372}

Note. The implied volatility is obtained by inverting the Black-Scholes model sepa-
rately for each call option contract on the Japanese yen for the period from April 1996
to December 1999, for a total of 9806 records. The implied volatilities are then aver-
aged within each moneyness-maturity class. Moneyness is represented by S�K, the
ratio of the spot exchange rate of the Japanese yen currency over the exercise price.
Two different maturities categories are plotted: less than 60 days to maturity and
between 60 and 180 days. The number of options by moneyness/maturity class is
shown below each implied volatility value.

TABLE III

Average Price and Average Trade Size 
by Moneyness and Maturity

Call options
April 1996–December 1999

days to expiration

S�K �60 60–180

�0.94 0.0027 0.0086
(44) (38)

0.94–0.97 0.0048 0.0122
(23) (29)

0.97–1.00 0.0087 0.0194
(25) (20)

1.00–1.03 0.0193 0.0341
(11) (11)

�1.03 0.0669 0.0769
(16) (13)

Note. Average call prices are given in cents, with average trade size below, for two
different maturities: less than 60 days to maturity and between 60 and 180 days.
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category. For options with longer term to expiration, that is, options
with more than 60 days to maturity, the smile is not as pronounced; it is
only for deep in-the-money call options that the extreme values are
found.

Next comes the issue of what short-term rate to use to proxy for the
instantaneous risk-free rate. In order to replicate the instantaneous
interest rate, an overnight rate should theoretically be used. However,
such a short period can give rise to unwanted issues such as the second
Wednesday settlement effect in the Federal Funds market. To avoid this
problem Ait-Sahalia (1996) selects the 7-day eurodollar rate. The issue
of what rate to use is tackled by Chapman, Long, and Pearson (1999),
who show that in an affine bond price model, accurate estimates of the

FIGURE 2
Black-Scholes implied volatility smiles. The implied volatility is obtained 

by inverting the Black-Scholes model separately for each call option 
contract on the Japanese yen for the period April 1996 to December 1999. 
The implied volatilities are then averaged within each moneyness-maturity 

class. Moneyness is represented by S�K, the ratio of the spot exchange 
rate of the Japanese yen currency over the exercise price. Two different 

maturities categories are plotted: less than 60 days to maturity 
and between 60 and 180 days.
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drift and diffusion of the short rate process can be obtained, even using
proxies with maturities as long as 3 months. Constant-maturity 3-month
Treasury bill rates are therefore used along with 3-month Japanese rates
collected from DataStream as proxies for the domestic and foreign short
rates.

Following Pan (2002), the parameters associated with the risk-free
rates are estimated separately and later used as the true parameters when
implementing and estimating the option models. The interest-rate param-
eters are obtained by maximum-likelihood estimation with the use of the
known transition density function.

ESTIMATION METHODOLOGY

Estimations are performed with the use of both the implied-state gen-
eralized method-of-moments method and the generalized-least-squares
technique. In the implied-state GMM setting, the term implied state
stands for the fact that at each step of the GMM procedure, implied
volatilities for each day in the sample are inferred with the use of the
model being estimated, observed data, and the current set of parame-
ters. The volatility used at a given iteration is therefore not the true
volatility, but an estimate based on the values taken by the parameters
at that specific stage of the estimation. As demonstrated by Pan
(2002), as the parameters eventually converge to their true (risk-
neutral) values the implied volatility time series, in turns, reaches its
“true” value.

The moments needed to implement the IS-GMM estimation are
derived from the data-generating process for the Japanese yen, differing
from its Equation (1–2) risk-neutral counterpart and given by

(8)

(9)

where and are standard Brownian motions under the objective
measure with correlation level r, where with hV reflecting
the additional volatility risk premium, and where hS reflects the risk pre-
mium for Brownian returns.

The moment-generating function used is the joint conditional
moment between the continuously compounded return and the volatility.
With the time-t conditional jointyt � ¢ ln(St) � � t

t�1(Ru � Rfu) du,

kV* � kV � hV
dvV*dvS*

dV(t) � [uV � kV*V(t)]dt � sV2V(t) dvV*(t)

� S(t)2V(t)  dvS*(t) � S(t)J*(t) dq*(t)

dS(t) � S(t)[R(t) � Rf(t) � lmJ* � hSV(t)]dt
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moment-generating function between yt and Vt between period t and
period t � 1 is

(10)

where details for a(�) and b(�) can be found in Pan (2002). The moments
subsequently used in the GMM estimation are derived by taking deriva-
tives of the moment-generating function and are obtained as

(11)

The computation of the derivatives is tedious work, albeit relatively
straightforward with derivations performed in Matlab with the symbolic
toolbox. Following Pan (2002), the implied volatility is estimated with
the use of short-term ATM options, for two reasons: Bakshi et al. (1997)
graphically show that most models’ volatility smiles seem to intersect
near-the-money. One may thus conjecture that ATM options reflect the
true volatility. ATM options also typically tend to be the most liquid
options, which helps guarantee that the implied volatility can always be
backed out for each day in the sample.

In order to implement IS-GMM, the moment conditions are given
by Et(gt�1) � 0 with the vector of errors defined as

(12)

and where

(13)

Armed with these moment conditions, the estimation of the param-
eters follows the Hansen (1982) generalized method of moments. The
Newey-West correction is applied to prevent the possibility of correlation
and autocorrelation, with the lag set to 20. Bartlett weights are used in
order to ensure that the resulting matrix is positive semidefinite.

The generalized-least-squares procedure is implemented as follows.
For a given day a cross-section of option prices of a given maturity range is
recorded. Let Cn(t, S, tn, R, Rf, Kn) be the observed option price on the nth
option in the sample on day t, let Ĉ(t, S, tn, R, Rf, Kn) be the model-driven
option price given a set of parameters and a volatility level V, let Kn and
tn be the exercise price and time-to-maturity of the nth option, let R and

®

gt�1
yV � yt�1Vt�1 � Et(yt�1Vt�1)

gt�1
V1 � Vt�1 � Et(Vt�1),     �gt�1

V2 � V2
t�1 � Et(Vt�1

2 )

gt�1
y3 � yt�1

3 � Et(yt�1
3 ),        �gt�1

y4 � y4
t�1 � Et(yt�1

4 )

gt�1
y1 � yt�1 � Et(yt�1),       �gt�1

y2 � yt�1
2 � Et(yt�1

2 )

gt�1 � [gt�1
y1 , gt�1

y2 , gt�1
y3 , gt�1

y4 , gt�1
V1 , gt�1

V2 , gt�1
yV ]T

Et(y
i
t �1V

j
t �1) �

0i�jMy,V(uy, uV)

0iuy 0juV
`
uy� 0, uV� 0

    i, j � 50, 1, . . .6

My,V(uy, uV) � exp[a(uy, uV) � b(uy, uV)Vt]
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Rf be, respectively, the domestic and foreign risk-free rates on day t and
let S be the value of the spot index on that same day. The generalized-
least-squares procedure is performed for each day t by minimizing

(14)  

The volatility V is estimated along with the rest of the model parameters
and is therefore treated as such. Following Bakshi et al. (1997), the sets of
parameters obtained for each day in the sample are finally averaged over
time in order to yield a unique set of model-implied estimated parameters.

PARAMETERS ESTIMATION RESULTS
AND OUT-OF-SAMPLE FIT

The methodologies discussed above are implemented on both short-term
options (less than 60 days to maturity) and medium-to-long-term options
(between 60 and 180 days to maturity), with IS-GMM and GLS
estimates reported in Tables IV and V. It is important to keep in mind

®

Min
V,® a

N

n�1
[Cn(t, S, tn, R, Rf, Kn) � Ĉn(t, S, tn, R, Rf, Kn)]2

TABLE IV

Implied-State GMM Implied Parameters

Implied-state GMM

Short-term options Mid/Long-term options

Parameters BS SV SVSI SVJ BS SV SVSI SVJ

kV 3.86 3.85 2.75 6.19 6.17 3.02
(1.99) (1.98) (1.52) (3.65) (3.59) (1.70)

uV 0.05 0.05 0.03 0.06 0.06 0.03
(4.85) (4.71) (3.55) (4.78) (4.75) (2.72)

sV 0.30 0.28 0.24 0.21 0.21 0.23
(3.86) (3.88) (2.35) (2.30) (2.20) (2.70)

r �0.14 �0.14 �0.09 �0.12 �0.13 �0.08
(2.47) (2.39) (2.09) (2.39) (2.38) (2.15)

l 0.24 0.15
(1.85) (1.87)

mJ �0.28 �0.06
(2.01) (1.99)

sJ 0.16 0.17
(3.27) (3.05)

Implied
Velocity (%) 12.92 13.86 13.84 13.02 13.78 15.59 15.60 13.51

Note. The IS-GMM methodology is applied to the period from April 1996 to December 1999 on the set of at-
the-money options. The numbers in parentheses are the t statistics. The final parameter values yield a true
implied volatility time series (calculated from the ATM short-term options time series) as a by-product. Its average
is reported at the bottom. The models are Black-Scholes (BS), stochastic volatility (SV), stochastic-volatility sto-
chastic interest rates (SVSI), and stochastic volatility with jumps (SVJ).
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TABLE V

Generalized-Least-Squares (GLS) Implied Parameters

Generalized Least Squares

Short-term options Mid/Long-term options

Parameters BS SV SVSI SVJ BS SV SVSI SVJ

kV 5.18 5.16 4.36 5.02 5.01 5.22
(2.15) (2.09) (2.26) (2.24) (2.23) (2.36)

uV 0.11 0.10 0.10 0.12 0.11 0.09
(1.76) (1.79) (1.87) (2.12) (2.13) (2.00)

sV 0.61 0.64 0.33 0.54 0.51 0.40
(2.08) (1.99) (2.37) (2.51) (2.46) (2.17)

r 0.04 0.03 �0.02 �0.02 �0.02 0.01
(2.34) (2.01) (�2.04) (�2.05) (�2.09) (2.73)

l 0.18 0.15
(�1.88) (�1.91)

mJ �0.49 �0.12
(�2.72) (�2.77)

sJ 0.18 0.18
(2.75) (2.11)

Implied
Volatility (%) 12.92 13.11 13.15 13.21 13.78 12.53 12.52 11.90

Note. Each day in the sample, model parameters are estimated by minimizing the sum of squared pricing
errors between the observed market prices and the model-driven prices. In each cell the parameters’ daily
averages are reported above the t statistic. The models are: Black-Scholes (BS), stochastic volatility (SV),
stochastic-volatility stochastic interest rates (SVSI), and stochastic volatility with jumps (SVJ).

that the two estimation techniques differ in nature. Because the GLS
procedure estimates parameters over the cross-section of option prices
by using the option pricing formula and observed option prices at a given
time t, the estimation yields risk-neutral parameters, whereas IS-GMM
yields both risk-neutral and objective parameters by including the time
series of the process in the estimation, in a panel data fashion.

For purposes of clarity and ease of comparison with GLS results,
Table IV thus only reports estimated risk-neutral parameters. However,
risk-premium parameters are also obtained as part of the estimation. The
Brownian risk premium hS is equal to 4.2, 2.0, and 4.0 for the SV, SVJ,
and SVSI models, respectively, when estimated from short-term options.
The short-term options volatility risk premium hV is equal to 4.8, 2.8,
and 2.7, respectively, and the objective mean jump size mJ*—specific to
the SVJ model—is estimated at 0.02 from short-term options. The
Brownian risk premium hS is equal to 4.5, 2.4, and 4.4 for the SV, SVJ,
and SVSI models when estimated from long-term options. The volatility
risk premium hV is equal to 5.3, 3.1, and 5.4, respectively, and the objective
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mean jump size mJ*—specific to the SVJ model—is estimated at 0.03
from long-term options. The risk-neutral and objective mean jump sizes
exhibit significant differences, indicating that the fear of a jump impacts
the value of the risk-neutral mean jump size in a negative fashion, send-
ing the risk-neutral parameter below its objective counterpart. The
volatility risk premium hV is positive and significantly different from 0 for
both short-term and long-term options, with values higher for long-term
options, indicating that volatility impacts options of longer maturities
more significantly. A noticeable feature is that implied volatility levels are
consistent across models. IS-GMM and GLS estimations both lead to
implied volatility levels that are never more than 2% apart. Implied
volatility levels are also more consistent across models in the case
of short-term options than in the case of longer-term options. Within
IS-GMM or GLS, the SV and SVSI parameters are close in value, whereas
SVJ results tend to lie further apart. Across estimation techniques, how-
ever, the parameters are not always consistent. In the case of short-term
options, for instance, the correlation coefficient r estimated from the SV
model is around 0.04 for GLS, and around �0.14 for IS-GMM.
However, because a USD/JPY call option can also be interpreted as a
JPY/USD put option, it is not obvious which correlation coefficient is the
most realistic.1 Ultimately, as Bates (1996) points out, different parame-
ters can sometimes produce similar results when it comes to perform-
ance, and the real test of quality of these estimated parameters comes in
the form of pricing and hedging exercises.

Flattening the Implied Volatility Smile

A presumably misspecified option-pricing model exhibits biases. When
implied volatility levels are inferred from observed option prices and
plotted against moneyness (S�K) levels, as with Black-Scholes, these
biases graphically translate into an implied volatility plot having the
shape of a smile or smirk across moneyness levels. A more flexible
option model should theoretically display fewer biases and thus a flat-
tened implied volatility smile. This section investigates by how much
the smile is reduced when different models and estimation methodolo-
gies are implemented. In the interest of space only graphs on short-
term options are reported. Short-term options are the most difficult to
price, as revealed by the deeper curvature of the Black-Scholes implied
volatility smile.

1The author thanks an anonymous referee for this remark.
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For parameters obtained through the GLS estimation, out-of-
sample implied volatility plots are obtained by replicating the procedure
described in Bakshi et al. (1997): For each model parameters are
estimated at time t � 1 and used as inputs along with time-t observed
variables (K, S, t, R, Rf) in the computation of implied volatility levels at
time t. Results are then grouped by moneyness/maturity categories and
implied volatility values plotted against the moneyness, with results
reported in Figure 3.

For parameters obtained through IS-GMM out-of-sample implied
volatility plots are obtained in the following manner: Because IS-GMM
does not allow parameters to change over time, IS-GMM parameters are
estimated on the first half of the sample and used as inputs to the models

FIGURE 3
Volatility smiles for options of maturity between 0 and 60 days: GLS. The implied volatility

is obtained by inverting the models separately for each call option contract on the
Japanese yen for the period April 1996 to December 1999 when the parameters are

estimated with GLS. The implied volatilities are then averaged within each 
moneyness-maturity class. Moneyness is represented by S�K, the ratio 

of the spot exchange rate of the Japanese yen currency over the exercise 
price. The models are Black-Scholes (BS), stochastic volatility (SV), 
stochastic-volatility stochastic interest rates (SVSI), and stochastic 

volatility with jumps (SVJ).
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FIGURE 4
Volatility smiles for options of maturity between 0 and 60 days: IS-GMM. The implied
volatility is obtained by inverting the models separately for each call option contract 

on the Japanese yen for the second half of the sample when the parameters are
estimated with IS-GMM. The implied volatilities are then averaged within each

moneyness-maturity class. Moneyness is represented by S�K, the ratio of the spot
exchange rate of the Japanese yen currency over the exercise price. The models 
are Black-Scholes (BS), stochastic volatility (SV), stochastic-volatility stochastic 

interest rates (SVSI), and stochastic volatility with jumps (SVJ).

for every option in the second half of the sample. Within each moneyness/
maturity class, implied volatility levels are computed and averaged, with
results reported in Figure 4.

For ease of comparison, Figures 3 and 4 report implied volatility lev-
els for all models (BS, SV, SVSI, and SVJ). The Black-Scholes implied
volatility plot displays the deepest smile, and the other models eliminate
some of the pricing biases and correspondingly produce flatter curves.
Overall, model performance does not seem strongly dependent on the
estimation technique used, as comparing the implied volatility plots pro-
duced by IS-GMM and GLS reveals very few differences. The only
noticeable idiosyncrasy is the fact that the SVJ plot appears a little lower
in the GLS case than in the IS-GMM case. It otherwise appears that
when either GLS or IS-GMM is used as an estimation method, the SVJ
model performs best, and the SV model provides the largest incremental
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improvement, thus flattening the curve. Finally, the SVSI model is
almost indistinguishable from the SV model.

Out-of-Sample Percentage Pricing Errors

Another approach to studying model performance is to analyze pricing
errors by moneyness and time to expiration. For parameters obtained
through the GLS estimation, out-of-sample pricing errors are obtained by
replicating the procedure described in Bakshi et al. (1997): For each
model, parameters are estimated at time t � 1 and used as inputs along
with time-t observed variables (K, S, t, R, Rf) in the computation of
pricing errors at time t. Pricing errors are defined as the difference
between model-predicted prices and observed option prices. Results are
then grouped by moneyness/maturity categories and reported in Table VI.

TABLE VI

Out-of-Sample Percentage Pricing Errors

IS-GMM GLS

Moneyness
Percentage pricing errors Percentage pricing errors

S�K Model �60 days 60–180 days �60 days 60–180 days

�0.94 BS 35.77 9.26 35.77 9.26
SV 6.75 8.32 1.83 0.13
SVSI 6.39 8.31 1.62 0.12
SVJ 3.50 2.10 �0.41 0.08

0.94–0.97 BS 7.36 �0.60 7.36 �0.60
SV 1.55 5.01 0.39 0.48
SVSI 1.46 4.88 0.38 0.45
SVJ �1.11 1.59 4.00 0.33

0.97–1.00 BS �1.32 �2.35 �1.32 �2.35
SV �0.28 1.66 0.05 0.06
SVSI �0.30 1.01 0.04 0.05
SVJ �1.63 0.69 0.22 �0.01

1.00–1.03 BS �1.08 �1.47 �1.08 �1.47
SV �0.55 0.98 �0.24 0.28
SVSI �0.51 0.86 �0.16 0.11
SVJ �0.79 0.88 �0.37 0.19

�1.03 BS �1.15 0.57 �0.15 0.57
SV �0.12 0.47 0.02 0.12
SVSI �0.10 0.28 �0.01 0.05
SVJ �0.10 0.13 �0.33 �0.48

Note. The table reports the pricing errors (model-predicted vs. market prices) as a percentage of the option
price for each call option contract on the Japanese yen for the 1996–1999 period in the GLS case and for the
second half of that period only in the IS-GMM case. The pricing errors are averaged within each moneyness-
maturity class. The results are shown for each model: Black-Scholes (BS), stochastic volatility (SV), stochastic-
volatility stochastic interest rates (SVSI), and stochastic volatility with jumps (SVJ). The performance of IS-GMM
is reported on the left-hand side, and the performance of the GLS is reported on the right.
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For parameters obtained through IS-GMM out-of-sample, pricing
errors are obtained as follows: Because IS-GMM does not allow parame-
ters to change over time, the IS-GMM parameters estimated in the first
half of the sample are then used as inputs to the models for every option
in the second half of the sample, in the same manner the implied volatil-
ity smile exercise is conducted. Within each moneyness/maturity class,
pricing errors are computed and averaged with results reported in
Table VI as well. Pricing errors are reported as percentages because
option prices reflect one unit of the Japanese yen as the underlying asset
and errors are thus very small in scale.

Table VI shows that the SV model provides the largest incremental
improvement in pricing over Black-Scholes in most maturity/moneyness
categories. The stochastic interest-rates feature only seems to improve
pricing abilities further in the case of options with longer maturities that
are at least in-the-money, as found by Bakshi et al. (1997). In other cat-
egories, incorporating stochastic interest rates does not provide any
noticeable pricing improvement, regardless of the estimation technique
employed. Introducing jumps to the model generally does lead to further
pricing improvement with both estimation techniques, although it is pos-
sible for the jump feature to hurt the performance of the model in some
categories with no particularly discernable pattern.

The main noticeable difference between IS-GMM and GLS is the
fact that the out-of-sample fit is actually better overall when using the
GLS methodology. This is most likely explained by the implementation of
the exercise. Errors are computed in the GLS case by recalibrating the
parameters on the day prior to the date when the pricing error is com-
puted, whereas in the IS-GMM case the parameters are estimated once
and kept unchanged when computing pricing errors. When comparing
the fit of the models with respect to each other, the patterns described in
the previous paragraph are very similar regardless of whether IS-GMM
or GLS is employed.

DYNAMIC HEDGING PERFORMANCE

The tests conducted in the previous sections provide an indication of
how the models perform in a static pricing environment. It may also be
of interest to practitioners to learn how the models perform in a portfo-
lio hedging exercise. The Black-Scholes, SV, SVSI, and SVJ models are
thus put to the test and compared in a dynamic hedging setting.
Comparisons between the GLS and IS-GMM estimation techniques are
also of interest, because the outcome determines the way a practitioner
should estimate the parameters.
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In the Black-Scholes setting, only the underlying asset is needed
to hedge a position in an option on that asset because the asset is the
only source of risk. In more realistic settings such as the SVJ model,
more sources of risk come into play. Random volatility, jumps and
interest rates are additional sources of risk assumed away in the Black-
Scholes setup. The delta-neutral hedge thus uses the underlying cur-
rency but also other assets in order to hedge the various sources of
randomness. Note, however, that jump risk cannot be controlled for, as
shown by Merton (1976), implying that frequent rebalancing is the
main tool to hedge against the chance of a jump. Also note that in
order for the strategy to make sense, it is assumed that transaction
costs are not excessive. If the transactions costs are very large, then a
more imperfect (but less expensive) single-instrument hedge is probably
in order.

Assume that one has a short position in a call option C(t, t) on the
Japanese yen. The goal is to construct a hedging portfolio whose change
in value replicates any change in value of the call option on the currency.
In the most general setting (SVSI-J), this implies that one must take a
position in XS(t) units of the Japanese yen currency in order to control
for currency price risk, XB(t) units of a t-period domestic discount bond
to account for domestic interest-rate risk, XF(t) units of a t-period
Japanese discount bond to account for foreign interest-rate risk, and
XC(t) units of another call option on the Japanese yen with a least one
different characteristic. An option with a different exercise price or
different maturity is thus all that is needed, even if the difference is not
large; the hedge ratios will adjust accordingly. Finally, X0(t) is the resid-
ual cash position invested or borrowed at the risk-free rate.

By matching and thus eliminating the various types of risk between
the option and the individual securities, it can be shown that the units
invested in the various securities described above must have the follow-
ing solutions, briefly displayed here and in the Appendix, as stochastic
interest rates in a currency setting produce hedging ratios different
enough from their equity counterparts to justify it:

(15)

(16)

(17)XF(t) �
XC(t)¢Rf

(t, t�, K�) � ¢Rf
(t, t, K)

S(t)cF(t)F(t, t)

XB(t) �
1

B(t, t)c(t)
5¢R(t, t�, K�)XC(t) � ¢R(t, t, K)6

XC(t) �
¢V(t, t, K)

¢V(t, t�, K�)
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XS(t) � 	S(t, t, K) � 	S(t, t�, K�)XC(t) � XF(t)F(t, t) (18)

X0(t) � C(t, t, K) � XS(t)S(t) � XB(t)B(t, t)

� XF(t)S(t)F(t, t) � XC(t)C(t, t�, K�) (19)

where

and where B(t, t) is the dollar-denominated price of a domestic (U.S.)
Treasury bill of maturity t, and where F(t, t) is the yen-denominated
price of a foreign (Japan) Treasury bill of maturity t. The details for
	S(t, T, K), 	V(t, T, K), and 	R(t, T, K) are given in the Appendix. The
hedging effectiveness of the portfolio is measured by the hedging error
term expressed as percentages, since straight hedging errors on one unit
of the Japanese yen are too small to be visually meaningful in a table. At
each rebalancing period an error term is computed, and the hedging
portfolio is rebalanced. This time, the error term is given by

H(t � 	t) � XS(t)S(t � 	t) � X0(t)e
R(t)	t � C(t � 	t, t � 	t)

� XB(t)B(t � 	t, t � 	t) � XF(t)S(t � 	t)F(t � 	t, t � 	t)
� XC(t)C(t � 	t, t� � 	t, K�) (20)

Parameters associated with the IS-GMM methodology are obtained
from the first half of the sample and held fixed for the hedging exercises.
On any given date t from the second half of the sample, the parameter
estimates are used along with the state variables (S, t . . .) date-t values to
construct the hedges corresponding to the various models for each option,
and for each option, on the next closest available day—when the option
reappears—hedging errors are recorded. The procedure is repeated for
every option every day in the sample. The hedging exercise associated with
GLS is conducted in the following manner. Information at time t � 1 is
used to compute parameter estimates using GLS, and on the next day, on
date t, these parameters are used to construct the specific hedges desired.
Finally, on the next closest available day, hedging errors are recorded with
the procedure repeated for every option every day in the sample. Note that
Bakshi et al. (1997) are able to vary the rebalancing period (1 and 5 days)
thanks to high liquidity levels present in index options, whereas the
compromise here is to rebalance when next possible, yielding an average

¢j(t, t�, K� ) �
0C(t, t�, K�)

0j
,  for j � S, R, Rf, V

¢j(t, t, K) �
0C(t, t, K)
0j

  and
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rebalancing frequency of about 3 trading days. All hedging errors are
finally grouped by moneyness and maturity in Table VII.

As in the pricing exercise, for ease of visual comparison percentage
errors only are reported due to the errors’ small scale. Note that straight
hedging errors are reported instead of absolute hedging errors to reflect
the point of view of a market maker whose gains and losses would be
expected to somewhat offset each other over time, assuming the market
maker maintains the position for more than one rebalancing period.

Table VII reveals that the largest improvement in hedging error
is provided by the stochastic volatility feature. Incremental changes
produced by the stochastic rates are negligible, whereas additional
improvement as a result of adding a jump feature to the model is some-
what debatable. Some categories reveal a slight improvement, but many

TABLE VII

Delta-Neutral Hedging Average Pricing Errors

IS-GMM GLS

Moneyness
Percentage hedging errors Percentage hedging errors

S�K Model �60 days 60–180 days �60 days 60–180 days

�0.94 BS �4.74 �5.98 �4.74 �5.98
SV �1.12 1.64 �0.38 1.57
SVSI �1.10 1.66 �0.40 1.58
SVJ 0.25 1.66 �1.64 2.71

0.94–0.97 BS �5.78 �8.14 �5.78 �8.14
SV �1.59 2.71 �0.87 2.89
SVSI �1.58 2.73 �0.87 2.92
SVJ �1.56 1.20 �0.96 3.00

0.97–1.00 BS �7.60 �15.14 �7.60 �15.14
SV �0.51 1.31 �0.08 1.07
SVSI �0.49 1.24 �0.07 1.06
SVJ �1.03 �0.88 �0.06 2.85

1.00–1.03 BS �8.43 �4.24 �8.43 �4.24
SV �2.47 0.39 �1.87 0.33
SVSI �2.45 0.40 �1.85 0.31
SVJ �2.53 �0.25 �1.44 0.42

�1.03 BS �1.94 �4.02 �1.94 �4.02
SV �1.01 �0.78 �0.93 �0.60
SVSI �1.00 �0.67 �0.91 �0.55
SVJ �0.98 �1.29 �0.90 �0.68

Note. This table reports the percentage hedging errors associated with a hedge constructed with the use of a
delta-neutral portfolio. For each call option contract on the Japanese yen, an average hedging error is computed
over the life of the option. The hedging errors are averaged within each moneyness-maturity class. The results
are shown for each model: Black-Scholes (BS), stochastic volatility (SV), stochastic-volatility stochastic interest
rates (SVSI), and stochastic volatility with jumps (SVJ). The performance of IS-GMM is reported on the left-hand
side, and the performance of the GLS is reported on the right.
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others do not. Most importantly, no clear pattern emerges from adding
the jump feature. The introduction of a second option in order to hedge
the stochastic volatility eliminates most of the gamma exposure, and
further model modifications do not add much in terms of hedging ability.
The GLS appears to yield slightly smaller hedging errors than IS-GMM
overall, similarly to what was found in the pricing exercise. However,
considering that the GLS parameters are recalibrated often and the
IS-GMM parameters are not, the IS-GMM method can be deemed to
perform as well as GLS. The information contained in the cross section
of option prices thus does not seem highly critical for pricing and hedging
purposes. There is otherwise no major difference to report regarding hedg-
ing error patterns among the different models, as the same conclusions
can drawn regardless of whether the GLS or the IS-GMM table is read.

CONCLUSION

A currency option pricing model is implemented that features stochastic
volatility, stochastic interest rates, and jumps, allowing for comparison of
nested models in the spirit of the equity options study by Bakshi et al.
(1997) and allowing for the modeling of skewness and kurtosis present
in the risk-neutral pricing distribution of the Japanese yen. Two compet-
ing estimation methodologies are then conducted and tested: GLS
(generalized least squares) and IS-GMM (implied-state generalized
method of moments). Parameters are estimated under both techniques
and used as inputs in various types of pricing and hedging comparisons
with two goals in mind. One goal is to determine the importance of the
information embedded in the cross section of option prices for hedging
and pricing purposes, using the fact that GLS uses this cross-sectional
information but IS-GMM does not. Another is to establish whether
results obtained by Bakshi et al. (1997) in an index options market
remain true in the case of a currency.

One finding is that most results obtained by Bakshi et al. (1997) in
the equity case still hold well in the case of a currency, despite the currency’s
unique structural characteristics resulting from government interventions.
The stochastic volatility model generally displays the largest incremental
improvement over Black-Scholes; the jump feature provides lower but still
meaningful pricing improvement, and the stochasticity of interest rates is
useful mainly in cases of in-the-money longer-term options.

A second and major finding is that IS-GMM and GLS display rela-
tively comparable levels of performance. Although GLS parameters
actually perform marginally better in pricing and hedging tests, it is
important to realize that the two estimation methods are fundamentally
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different and that conducting fair comparison tests is challenging.
Because of the differences in their natures, GLS is often granted
frequent readjusting of the parameters, but IS-GMM is not, a fact seri-
ously undermining the apparent marginal superiority of GLS. In other
words, because IS-GMM performs nearly as well as GLS, it appears that
the cross-section of option prices does not contain information signifi-
cantly valuable for pricing and hedging purposes.

This surprising conclusion thus seems to indicate that moment-
based methods are somewhat superior to GLS because they are also
internally more consistent than least-squares estimation techniques in
the way the dynamics of the process are handled in the estimation.
However, despite its shortcomings, GLS provides a feature that IS-GMM
cannot claim: simplicity. GLS may require more frequent updating of the
parameters, forecast can only be made one step ahead, and the informa-
tion contained in the cross section of option prices may seem to be low,
but the time and effort required to implement it are significantly less
than what is needed in most moment-based estimations. Therefore, even
though the information content of cross-sectional option prices does not
seem to be of major importance, estimation techniques that make use of
this information set will most likely remain a popular tool so long as they
are straightforward to implement.

APPENDIX

Expressions for the Delta-Neutral Hedge
(SVSI-J, Most General Case)

The number of units of the various assets needed for the hedge is
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where

•

where

•

where
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