Homework 1

1. (20 points) Starting with the algebra of rotational generators $\left[\hat{\mathrm{J}}_{\mathrm{i}} \hat{\mathrm{J}}_{\mathrm{j}}\right]=\mathrm{i} \sum_{\mathrm{k}} \epsilon_{\mathrm{ijk}} \hat{\mathrm{J}}_{\mathrm{k}}$
show that the following relations are true :

$$
\begin{aligned}
& {\left[\hat{\jmath}^{2}, \hat{\jmath}_{j}\right]=0 .} \\
& {\left[\hat{\jmath}_{z}, \hat{\jmath}_{ \pm}\right]= \pm \hat{\jmath}_{ \pm}} \\
& {\left[\hat{\jmath}_{+}, \hat{\jmath}_{-}\right]=2 \hat{\mathrm{~J}}_{z}} \\
& {\left[\hat{\jmath}_{ \pm}, \hat{\jmath}^{2}\right]=0}
\end{aligned}
$$

2. (20 points) Show that $\hat{\mathrm{J}}_{+}$and $\hat{\mathrm{J}}_{-}$represent step up and step down operators for the
eigenstate of the operator $\hat{\mathrm{J}}_{\mathrm{z}}$. Calculate the eigenvalue of $\hat{\jmath}^{2}$ operators.
3. (20 points) Show that $\hat{\jmath}_{ \pm}\left|\psi_{j, m}\right\rangle=\sqrt{j(j+1)-m(m \pm 1)}\left|\psi_{j, m \pm 1}\right\rangle$
4. (20 points) Calculate the matrix elements of $\hat{\mathrm{J}}_{ \pm}$and $\hat{\mathrm{J}}_{z}$ operators. That is $\left\langle\psi_{j, m^{\prime}}\right| J_{ \pm}\left|\psi_{j, m}\right\rangle$ and $\left\langle\psi_{j, m^{\prime}}\right| J_{z}\left|\psi_{j, m}\right\rangle$
5. (50 points) Show that $\left[\hat{p}_{i}, \hat{L}_{j}\right]=$
$i \sum_{k} \epsilon_{i j k} \hat{p}_{k}$ and $\left[\hat{r}_{i}, \hat{L}_{j}\right]=i \sum_{k} \epsilon_{i j k} \hat{r}_{k}$

- Show explicitely that these generators satisfy the following commutator relations $:\left[\hat{L}_{i} \hat{L}_{j}\right]=i \sum_{k} \epsilon_{i j k} \hat{L}_{k}$

6. (70 points) Obtain the expressions for the operators
$\hat{L}^{2}, \hat{L}_{x}, \hat{L}_{y}$ and \hat{L}_{z} in polar coordinates as it acts on a wave function.
