Homework 1

1. (20 points) Starting with the algebra of rotational generators $\begin{bmatrix} \hat{J}_i & \hat{J}_j \end{bmatrix} = i \sum_k \varepsilon_{ijk} \hat{J}_k$ show that the following relations are *true*: $\begin{bmatrix} \hat{J}^2, & \hat{J}_j \end{bmatrix} = 0.$ $\begin{bmatrix} \hat{J}_z, & \hat{J}_z \end{bmatrix} = \pm \hat{J}_{\pm}$ $\begin{bmatrix} \hat{J}_z, & \hat{J}_z \end{bmatrix} = \pm \hat{J}_{\pm}$ $\begin{bmatrix} \hat{J}_z, & \hat{J}_z \end{bmatrix} = 2 \hat{J}_z$ $\begin{bmatrix} \hat{J}_z, & \hat{J}^2 \end{bmatrix} = 0$

2. (20 points) Show that \hat{J}_+ and \hat{J}_- represent step up and step down operators for the eigenstate of the operator \hat{J}_z . Calculate the eigenvalue of \hat{J}^2 operators.

3. (20 points) Show that $\hat{J}_{\pm} | \psi_{j,m} \rangle = \sqrt{j (j + 1) - m (m \pm 1)} | \psi_{j,m\pm 1} \rangle$

4. (20 points) Calculate the matrix elements of \hat{J}_{\pm} and \hat{J}_{z} operators. That is $\langle \psi_{j,m'} | J_{\pm} | \psi_{j,m} \rangle$ and $\langle \psi_{j,m'} | J_{z} | \psi_{j,m} \rangle$

5. (50 points) Show that $[\hat{p}_i, \hat{L}_j] =$ $i \sum_k \epsilon_{ijk} \hat{p}_k$ and $[\hat{r}_i, \hat{L}_j] = i \sum_k \epsilon_{ijk} \hat{r}_k$ -Show explicitely that these generators satisfy the following commutator relations : $[\hat{L}_i \hat{L}_j] = i \sum_k \epsilon_{ijk} \hat{L}_k$ 6. (70 points) Obtain the expressions for the operators \hat{L}^2 , \hat{L}_x , \hat{L}_y and \hat{L}_z in polar coordinates as it acts on a wave function.

2