Homework 2

1. (100 points) Calculate eigenstates of \hat{L}_{z} operator.

Demonstrate that eigenvaleus of this operator are integer numbers
2. (200 points) Calculate eigenstates of \hat{L}^{2} operator.
3. (100 points) Calculate $\hat{L}_{x} \psi_{l, m}$ and $\hat{L}_{y} \psi_{l, m}$ where ψ_{l},m eigenstates of $\hat{\mathrm{L}}^{2}$ and $\hat{\mathrm{L}}_{z}$ operators
4. (20 points) Using the expression :

$$
Y_{l}^{m}(\theta, \phi)=(-1)^{\frac{m+\mid m}{2}} \left\lvert\,\left[\frac{2 l+1}{4 \pi}\left(\frac{(l-[m])!}{(l-[m])!}\right)\right]^{\frac{1}{2}} P_{l}^{|m|}(\cos \theta) e^{i m \phi}\right.
$$

where $P_{l}^{|m|}(\cos \theta)$ is Associated Legendre Function.
Show that $Y_{l}^{m}(\pi-\theta, \phi+\pi)=(-1)^{l} Y_{l}^{m}(\theta, \phi)$.
Explain why this relation is related to the parity of the quantum state

