Homework 2

- 1. (100 points) Calculate eigenstates of \hat{L}_z operator. Demonstrate that eigenvaleus of this operator are integer numbers
- 2. (200 points) Calculate eigenstates of \hat{L}^2 operator.
- 3. (100 points) Calculate $\hat{L}_x \psi_{l,m}$ and $\hat{L}_y \psi_{l,m}$ where $\psi_{l,m}$ eigenstates of \hat{L}^2 and \hat{L}_z operators
- 4. (20 points) Using the expression:

$$Y_{l}^{m}(\theta, \phi) = (-1)^{\frac{m+|m|}{2}} \left[\frac{2l+1}{4\pi} \left(\frac{(l-[m])!}{(l-[m])!} \right) \right]^{\frac{1}{2}} P_{l}^{|m|}(\cos\theta) e^{im\phi}$$

where $P_1^{|m|}$ (cos θ) is Associated Legendre Function.

Show that $Y_1^m (\pi - \theta, \phi + \pi) = (-1)^l Y_1^m (\theta, \phi)$.

Explain why this relation is related to the parity of the quantum state