Homework 6

1. (30 point) Show that for any L and S :
$\psi_{l, m_{l}, s, m_{l}}$ is an eigenstate of \hat{J}_{z} operator and $m_{j}=m_{l}+m_{s}$.
However, show that $\psi_{l, m_{l}, s, m_{l}}$ is not an eigenstate of $\hat{\jmath}^{2}$ operator ingeneral.
2. (40 points) Express $\Phi_{j, m_{j}}$ through $\psi_{\imath, m_{l}, s, m_{s}}$ for a system consisting of $s=1 / 2$ and $l=1$.
3. (40 points) Express Φ_{j}, m_{j} through $\psi_{\imath, m_{l}, s, m_{s}}$ for general case of $s=1 / 2$ and l.
4. (40 points) Obtain Recursion Relation for Clebsch Gordan coefficients
5. (40 points) Obtain the Hamiltonian of the deuteron nucleus.

Show why it has only $l=0$ and $l=2$
orbital angular momentum sates and why
the total spin of proton and neutron; $S=S p+S n=1$
6. (40 points) Express the deuteron wave function at different total angular momentum J projections (1, 0, -1) through the radial wave functions and spherical wave functions1.
7. (30 points) Construct the total spin state of bound quark - antiquark system.

