Homework 4 (10 points each problem)

1. Show how the following transformation law is obtained

$$
A^{\prime \mu}=\frac{\partial x^{\prime \mu}}{\partial x^{\nu}} A^{\nu} .,
$$

Then usin the above and the definition of scalar product obtain the transformation relation for $A_{\mu}{ }^{\prime}$ 。
2. Obtain the transformation relation for $g_{\mu \nu}$ and $g^{\mu \nu}$ as well as calculate $g_{\mu \alpha} g^{\beta u}$.
3. Show that the tensor relations are invariant with respect to the general transformation (covariance theorem).
4. Show that Affine connection is not a true tensor
5. Using relation $\Gamma_{\mu \nu}^{\lambda}=\left\{\begin{array}{c}\lambda \\ \mu \nu\end{array}\right\}$ prove that $\Gamma_{\kappa \mu \nu}+\Gamma_{\mu \kappa \nu}=g_{\mu \kappa, \nu}$
6. Show that $\frac{d A^{\mu}}{d x^{\nu}}$ is not a true tensor, while the covariant derivative $A_{; \nu}^{\mu}=\frac{\mathbb{d} A^{\mu}}{\mathbb{d} x^{\nu}}+\Gamma^{\mu}{ }_{\sigma v} A^{\sigma}$ is a true tensor.
7. From $A^{\mu}{ }_{; v}=\frac{d A^{\mu}}{d x^{v}}+\Gamma^{\mu}{ }_{\sigma v} A^{\sigma}$ obtain the covariant derivative for second rank contravariant tensor: $\mathrm{T}^{\mu \nu}$
8. Show that $g_{\mu \nu ; \lambda}=g^{\mu \nu}{ }_{; \lambda}=0$

