Exam 1

1. (10 points) (a) Prove that if $\lim_{n\to\infty} n^p u_n = A - finite$, p > 1, the series $\sum_{n=1}^{\infty} u_n$ converges (b) Prove that if $\lim_{n\to\infty} n \cdot u_n = A > 0$, the series $\sum_{n=1}^{\infty} u_n$ diverge

2. (10 points) With n > 1 show that
(a)
$$\frac{1}{n} - \ln\left(\frac{n}{n-1}\right) < 0$$
,
(b) $\frac{1}{n} - \ln\left(\frac{n+1}{n}\right) > 0$

3. (10 points) Evaluate
$$\lim_{x\to 0} \left[\frac{\sin(\tan x) - \tan(\sin(x))}{x^7} \right]$$

4. (10 points) Expand function P (x) = $c \left(\frac{\cosh(x)}{\sinh(x)} - \frac{1}{x} \right)$

as a power series for small x

5. (15 points) Show that rotation does not change the scalar
product of vectors
(consider 2 dimensional case)

6. (15 points) Using Levi – Civita constants calculate $\vec{A} \times (\vec{B} \times \vec{C})$, $\vec{A} \times (\vec{\nabla} \times \vec{C})$, $\vec{\nabla} \times (\vec{B} \times \vec{C})$ and $\vec{\nabla} \times (\vec{\nabla} \times \vec{V})$

7. (15 points) Start with Maxwell equations with Electric and Magnetic fields and express them through field potentials

8. (15 points) Express $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$ and $\frac{\partial}{\partial z}$ in sperical polar coordinates.

2