Exam 1

1. (10 points)
(a) Prove that if $\lim _{n \rightarrow \infty} n^{p} u_{n}=A-f i n i t e, p>1$, the series $\sum_{n=1}^{\infty} u_{n}$ converges
(b) Prove that if $\lim _{n \rightarrow \infty} n \cdot u_{n}=A>0$, the series $\sum_{n=1}^{\infty} u_{n}$ diverge
2. (10 points) With $\mathrm{n}>1$ show that
(a) $\frac{1}{n}-\ln \left(\frac{n}{n-1}\right)<0$,
(b) $\frac{1}{n}-\ln \left(\frac{\mathrm{n}+1}{\mathrm{n}}\right)>0$
3. (10 points) Evaluate $\lim _{x \rightarrow 0}\left[\frac{\sin (\tan x)-\tan (\sin (x))}{x^{7}}\right]$
4. (10 points) Expand function $P(x)=c\left(\frac{\cosh (x)}{\sinh (x)}-\frac{1}{x}\right)$ as a power series for small x
5. (15 points) Show that rotation does not change the scalar product of vectors (consider 2 dimensional case)
6. (15 points) Using Levi - Civita constants calculate $\vec{A} \times(\vec{B} \times \vec{C}), \vec{A} \times(\vec{\nabla} \times \vec{C}), \vec{\nabla} \times(\vec{B} \times \vec{C})$ and $\vec{\nabla} \times(\vec{\nabla} \times \vec{V})$
7. (15 points) Start with Maxwell equations with Electric and Magnetic fields and express them through field potentials

$$
\begin{aligned}
& \text { 8. (15 points) Express } \frac{\partial}{\partial x} \\
& \frac{\partial}{\partial y} \text { and } \frac{\partial}{\partial z} \text { in sperical polar coordinates. }
\end{aligned}
$$

