Homework 10 (20 points each)

1. Calculate $\oint_{c} z^{n} d z$ for integers $n \geq-1$
2. Prove Cauchy ' s Integral Theorem
3. Calculate
$\oint_{c} \frac{d z}{z^{2}+z}$ for circle C defined by $|z|=R>1$
4. Show that
$\oint_{c} z^{m-n-1} d z$ were m and n are integers is
Kronecjer $\delta_{\text {mn }}$
5. Evaluate
$\oint_{c} \frac{e^{i z} d z}{z^{3}}$ for a contour around 0.
6. Evaluate
$\oint_{c} \frac{\sin ^{2} z-z^{2}}{(z-a)^{3}} d z$, where the contour encircles a
7. Evaluate
$\oint_{c} \frac{d z}{z(2 z+1)}$ when C is a unit circle

8. Evaluate

$\oint_{c} \frac{d z}{z(2 z+1)^{2}}$ when C is a unit circle
9. Derive Cauchy Inequality and prove the fundamental theorem of algebra.

