Homework 5 (20 points each)

1. Obtain matix of rotation in 2 D space for rotation by angle ϕ
2. Generalize the matix of rotation in 3 D space expressed through unit vectors.
3. Show that matrix of rotation in 3 D space in the form of unit vectors is a orthogonal matirx i.e. $\mathrm{S}^{\top}=\mathrm{S}^{-1}$
4. Obtain 3 D rotational matrix through the partial derivatives like Eq. (3.33)
prove also the relation (3.34)
5. Calculate the gradient of $f(r) r^{n}$ and consider cases of $f=1$, $\mathrm{n}=1$,
and $f=1$ and $n=-1$.
6. Calculate divergence of $f(r) r^{n} \hat{r}$ ases of $f=1, n=1$, and $\mathrm{f}=1$ and $\mathrm{n}=-2$.
