Homework 6 (20 points each but problem 8)

1. Calculate curl of $f(r) r^{n} \hat{r}$.
2. Calculate curl of $-z \hat{e}_{x}+x \hat{e}_{y}$
3. Calculate $\vec{\nabla} \cdot \vec{\nabla} \phi$ and then consider case of $\phi=r^{n}$
4. Calculate $\vec{\nabla} \times \vec{\nabla} \phi$ and $\vec{\nabla} \cdot(\vec{\nabla} \times \vec{V})$ and $\vec{\nabla}(\vec{\nabla} \cdot \overrightarrow{\mathrm{V}})$
5. Simplify $\vec{\nabla} \times(\vec{\nabla} \times \vec{V})$ using Levi - Civita tensor.
6. Using Maxwell equations obtain wave equations for Electric and Magnetic

Fields
7. Calcualte $\vec{\nabla} \cdot(\mathrm{f} \overrightarrow{\mathrm{V}})$ where f and \vec{V} are scalar and vector functions and $\vec{\nabla}(\vec{A} \cdot \vec{B})$ where A and B are vector fields
8. (40 points) Excercises $3.6 \times .5,3.6 \times .6,3.6 \times .7$,
$3.6 \times .8$,
$3.6 \times .9$

