Homework 7 (20 points each)

1. Show that

$$
\begin{aligned}
& \int \vec{A}(r) \cdot \vec{\nabla} f(r) d^{3} r=-\int f(r)(\vec{\nabla} \cdot \vec{A}(r)) d^{3} r \\
& \int \vec{V}(r) \cdot(\vec{\nabla} \times \vec{A}(r)) d^{3} r=\int \stackrel{\rightharpoonup}{A}(r) \cdot(\vec{\nabla} \times \vec{V}(r)) d^{3} r
\end{aligned}
$$

2. Scetch the Gauss Theorem

3. Show that

$\oint_{\delta V} F(r) d \vec{\sigma}=\int_{V} \vec{\nabla} F(r) d^{3} r$
$\oint_{\delta V} d \vec{\sigma} \times \vec{V}(r)=\int_{V} \vec{\nabla} \times \vec{V}(r) d^{3} r$
4. Scetch the Stokes ' theorem
5. Show that

$$
\begin{aligned}
& \int_{S} \mathrm{~d} \vec{\sigma} \times \vec{\nabla} \phi(r)=\oint_{\delta S} \phi(r) d \vec{r} \\
& \int_{S}(d \vec{\sigma} \times \vec{\nabla}) \times \vec{V}(r)=\oint_{\delta S} d \vec{r} \times \vec{V}(r)
\end{aligned}
$$

6. Express Maxwell equations through scalar and vector potentials using
Lorentz gauge
7. Derive Gauss ' Law
8. Show that $\nabla^{2}\left(\frac{1}{r}\right)=-4 \pi \delta(r)$
