MAS 3105 (LINEAR ALGEBRA)

Assignment 1, due Wednesday May 20, 2015

Name:

PID:
Remember that you won't get any credit if you do not show the steps to your answers. No late assignment will be accepted.

1. Let m, a, b, c, d be real numbers. Consider the linear system

$$
\left\{\begin{array}{l}
x+(m+1) y+2 m w=a \\
m x+z+w=b \\
(2 m+1) x+y+(m+1) z+w=c \\
(m+1) z+(m+1) w=d .
\end{array}\right.
$$

a) Write down the matrix A_{m} corresponding to this system.
b) Find all values of m for which A_{m} is singular. (Hint. Find the determinant of A_{m}.)
c) For each value obtained in b), find necessary and sufficient conditions on a, b, c, and d such that the linear system is consistent, and find all solutions in each case.
2) Let A be an $n \times n$ matrix satisfying $I_{n}+A-5 A^{2}+7 A^{5}-9 A^{11}=0_{\mathcal{M}_{n}}$. Show that A is nonsingular, and find its inverse.
3) Consider the matrices

$$
A=\left(\begin{array}{lll}
1 & -1 & 2 \\
3 & -2 & 1 \\
4 & -3 & 5
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & -1 & 2 \\
3 & -2 & 1 \\
6 & -5 & 9
\end{array}\right), \quad C=\left(\begin{array}{ccc}
-3 & -1 & 2 \\
1 & -2 & 1 \\
-6 & -3 & 5
\end{array}\right)
$$

Find an elementary matrix E such that $E A=B$ and an elementary matrix F such that $A F=C$.
4) Let A, B, and C be $n \times n$ matrices such that $A \neq 0_{\mathcal{M}_{n}}, B \neq 0_{\mathcal{M}_{n}} C \neq 0_{\mathcal{M}_{n}}$, and $A B C=0_{\mathcal{M}_{n}}$. Show that at least two of those matrices are singular.

