MAS 3105 (LINEAR ALGEBRA)

Assignment 3, due Wednesday June 17, 2015

Remember that you won't get any credit if you do not show the steps to your answers. Neither me nor the LA can help you with this assignment, as it is graded. Assignments written the same way will all get zero. Do your best. No late assignment will be accepted.

1. Let $A=\left(\begin{array}{lll}4 & 1 & -2 \\ 0 & 5 & -2 \\ 3 & 1 & -1\end{array}\right)$.
a) Find all the eigenvalues of A.
b) For each eigenvalue, find the corresponding eigenspace.
c) Find a diagonalizing matrix U for A.
d) Find a matrix B such that $B^{5}=A$.
2) Let $N=\left(\begin{array}{cc}1 & -2 \\ -1 & 2\end{array}\right)$.
a) Find N^{2}, N^{3}, and N^{4}. Do you see a pattern?
b) Find a formula for N^{n} for each $n \geq 1$, and prove your formula using mathematical induction.
c) Find e^{N}.
3) Let $M=\left(\begin{array}{ccc}1 & 1 & 1 \\ 2 & 1 & 1 \\ -2 & -1 & -1 \\ 4 & 2 & 3\end{array}\right)$.
a) Find an orthonormal basis for the column space of M.
b) Find the $Q R$ factorization for M, where the column vectors of Q form an orthonormal basis for the column space of M.
c) Solve the least squares problem $M \mathbf{x}=\mathbf{b}$, where $\mathbf{b}=(-1,1,2,3)^{T}$.
4) Let A be an $m \times n$ matrix with rank n. Set $P=A\left(A^{T} A\right)^{-1} A^{T}$.
a) Show that $R(P)=R(A)$.
b) Show that $N(P)=N\left(A^{T}\right)$.
