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An abstract model

Model formulation

Let H and V be Hilbert spaces with V ⊂ H. Assume V is dense in H
and the injection of V into H is compact. Denote by (., .) the inner
product in H, by |.| the corresponding norm, and by V ′ the dual of V .
Consider the damped abstract equation

ytt + Ay + Byt = 0 in (0,∞)
y(0) = y0 ∈ V , yt (0) = y1 ∈ H,

where A ∈ L(V ,V ′) is a selfadjoint coercive operator with D(A
1
2 ) = V ,

and B ∈ L(H) is a nonnegative operator.

Introduce the energy

E(t) =
1
2
{|yt (t)|2 + |A

1
2 y(t)|2}, ∀t ≥ 0.
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An abstract model

Theorem: Dafermos criterion

1970: Dafermos proves: the abstract system is strongly stable

lim
t→∞

E(t) = 0

if and only if
KerB ∩ Ker(A + λI) = {0}, ∀λ ∈ R

where I denotes the identity operator on H.

For the stabilization of single component systems, we refer to the
contributions of Bardos-Lebeau-Rauch, Rauch-Taylor, Russell,
Dafermos, Chen, Haraux, Komornik, Lasiecka, Nakao, Liu, Martinez,
Triggiani, Zuazua,...
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Simultaneous stabilization

Brief literature

By simultaneous stabilization, we should understand stabilizing a
multi-component system using the same damping mechanism in all
components; the matrix defining the damping is degenerate.

1986: Russell introduces the notion of simultaneous control for
pdes when studying the boundary controllability of the Maxwell’s
equations.
1988: Lions (v.1, Controllability book) analyzes simultaneous
boundary control problems for two uncoupled waves, and for two
uncoupled plates.
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Simultaneous stabilization

Brief literature

Consider the system of uncoupled wave equations

ujtt − aj∆uj = 0 in Q
uj = 0 on Γ× (0,T )
uj(x ,0) = u0

j (x), ujt (x ,0) = u1
j (x) in Ω, j = 1, 2, ..., q,

where (u0
j ,u

1
j ) ∈ H1

0 (Ω)× L2(Ω) for each j .

1988: Haraux (1988) shows for arbitrary nonempty open set ω:
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Simultaneous stabilization

If
∑q

j=1 uj(x , t) = 0 in ω × (0,T ) then u0
j = 0, u1

j = 0 in Ω, ∀j .
provided that aj 6= ak for all j , k with j 6= k .

If N = 1 and T is large enough, or ω = Ω, then there exists C > 0:
for all j and all (u0

j ,u
1
j ) ∈ L2(Ω)× H−1(Ω)

q∑
j=1

{||u0
j ||

2
L2(Ω) + ||u1

j ||2H−1(Ω)} ≤ C
∫ T

0

∫
ω
|

q∑
j=1

uj(x , t)|2 dxdt

provided that aj 6= ak for all j , k with j 6= k .
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Simultaneous stabilization

(GCC): Bardos-Lebeau-Rauch (1992): ω is an admissible control
region in time T if every ray of geometric optics enters ω in a time less
than T .

Theorem 1 (CRAS, Paris, 2012)
Let T0 denote the best controllability time for a single wave equation
with unit speed of propagation. Suppose that

T > T0 max{a−
1
2

j ; j = 1, 2, ..., q} and (ω,T ) satisfies (GCC). There
exists a constant C > 0 such that for all (u0

j ,u
1
j ) ∈ H1

0 (Ω)× L2(Ω),
j = 1, 2, ..., q:

q∑
j=1

{||u0
j ||

2
H1

0 (Ω)
+ ||u1

j ||2L2(Ω)} ≤ C
∫ T

0

∫
ω
|

q∑
j=1

ujt (x , t)|2 dxdt ,

with C = C(Ω, ω,T , (aj)j ,q), if and only if aj 6= ak for all j , k with j 6= k .
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Simultaneous stabilization

Lamé systems with localized damping

Given (y0
j , y

1
j )j ∈

([
H1

0 (Ω)
]N × [L2(Ω)

]N)q
, and a function d ∈ L∞(Ω),

d ≥ 0, consider the damped elastodynamic system

yjtt − µj∆yj − (µj + λj)∇div(yj) + d
q∑

k=1

ykt = 0 in Ω× (0,∞)

yj = 0 on Γ× (0,∞)
yj(x ,0) = y0

j (x), yjt (x ,0) = y1
j (x), in Ω,

j = 1, 2, ..., q,

where, for each j , µj and λj are the Lamé constants.
The total energy is given, for all t ≥ 0, by

2E(t) =

q∑
j=1

∫
Ω
{|yjt (x , t)|2 + µj |∇yj(x , t)|2 + (µj + λj)|div(yj(x , t))|2}dx
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Simultaneous stabilization

Lamé systems with localized damping

E is a nonincreasing function of the time variable as

dE
dt

= −
∫

Ω
d(x)

∣∣∣∣∣
q∑

k=1

ykt (x , t)

∣∣∣∣∣
2

dx .

Question 1: Does the energy E decay to zero as time goes to infinity?
Question 2: Under which conditions is the Lamé system exponentially
stable?
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Simultaneous stabilization

Introduce the Hilbert space H =
([

H1
0 (Ω)

]N × [L2(Ω)
]N)q

over the
field C of complex numbers, equipped with the norm

||Z ||2H =

q∑
j=1

∫
Ω
{|vj(x)|2 + µj |∇uj(x)|2 + (µj + λj)|div(u(x))|2}dx ,

∀Z = ((uj , vj)j) ∈ H.
Set Zj = (yj , yj,t ). The Lamé system may be recast as the first order
abstract evolution equation

Żj = AjZj , Zj(0) = (y0
j , y

1
j ), j = 1, 2, ..., q,

where the dot denotes differentiation with respect to time,and the
unbounded operator A is given by
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Simultaneous stabilization

Aj =

(
0 I

µj∆ + (µj + λj)∇div −dL

)

with Lv =

q∑
j=1

vj , for every v = (vj)j ∈ [L2(Ω)]Nq, and

D(Aj) =
{

(uj , vj) ∈ [H1
0 (Ω)]N × [H1

0 (Ω)]N ;

µj∆uj + (µj + λj)∇divuj ∈ [L2(Ω)]N
}
.

It can be checked that one has (assuming for instance that Γ is C2)

D(Aj) = [H2(Ω) ∩ H1
0 (Ω)]N × [H1

0 (Ω)]N .

Thus, the operator Aj has a compact resolvent. Consequently the
spectrum of Aj is discrete for each j .
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Simultaneous stabilization

With the help of Lumer-Phillips Theorem, (Pazy’s book on semigroups,
p. 14), one can show that the operator A = (Aj)j is the infinitesimal
generator of a C0-semigroup of contractions on H. Indeed, D(A) is
dense in H, A is dissipative

<(AZ ,Z ) = −
∫

Ω
d(x)|

q∑
j=1

vj(x)|2 dx ≤ 0, ∀Z ∈ D(A),

and (denoting by I the identity operator on H):

R(I − A) = H, by Lax-Milgram Lemma.
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Simultaneous stabilization

Lamé systems with localized damping

Theorem 2: Strong stability (2018)

Let ω be a nonempty open subset of Ω. Suppose that d is positive in ω.
The elastodynamic system is strongly stable:

lim
t→∞

E(t) = 0

if and only if the propagation speeds are pairwise distinct:

µj 6= µk and λj + 2µj 6= λk + 2µk , ∀j , k , j 6= k .
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Simultaneous stabilization

Proof sketch:

We may apply Dafermos criterion, or Benchimol or Arendt-Batty strong
stability criterion. It suffices to show that A has no purely imaginary
eigenvalue. One easily checks that 0 ∈ ρ(A). Now, let λ be a nonzero
real number and let Z = (u, v) ∈ D(A) with

AZ = iλZ . (∗)

We shall show that Z = (0,0). It follows from (∗):

d(x)

q∑
j=1

uj = 0 in Ω, and so,− λ2uj − µj∆uj − (µj + λj)∇divuj = 0 in Ω.

Therefore, setting ϕj = div(uj) and `j = 1/(λj + 2µj), it follows
q∑

j=1

uj = 0 in ω, and − λ2`jϕj −∆ϕj = 0 in ω.
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Simultaneous stabilization

Using elementary algebra, one derives from the last two equations

q∑
j=1

`kj ϕj = 0 in ω, k = 0, 1, ..., q − 1.

The determinant of that linear system is a Vandermonde determinant
and is given by

Dq = Π1≤j<k≤q(`k − `j).

One checks that Dq 6= 0 if and only if λj + 2µj 6= λk + 2µk for all j , k
with j 6= k . In this case, ϕj = 0 in ω for each j .

Dq = Π1≤j<k≤q(`k − `j).
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Simultaneous stabilization

Consequently,
−λ2uj − µj∆uj = 0 in ω.

Repeating the same arguments as above, we find, (setting mj = 1/µj ):

q∑
j=1

mk
j uj = 0 in ω, k = 0, 1, ..., q − 1.

As earlier, one derives uj = 0 in ω for each j if and only if µj 6= µk for all
j , k with j 6= k .

The Imanuvilov-Yamamoto Carleman estimate for the static Lamé
system [Appl. Anal. 2004] then yields uj = 0 in Ω for each j . Hence
Z = (0,0).
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Simultaneous stabilization

A new unique continuation result

Theorem 3.
Let ω be an arbitrary nonvoid open set contained in Ω. Consider the
uncoupled elastodynamic system

yjtt − µj∆yj − (µj + λj)∇div(yj) = 0 in Ω× (0,∞)
yj = 0 on Γ× (0,∞)
yj(x ,0) = y0

j ∈ [H1
0 (Ω)]N , yjt (.,0) = y1

j ∈ [L2(Ω)]N ,

j = 1,2, ...,q.

Assume that µj 6= µk and λj + 2µj 6= λk + 2µk , ∀j , k , j 6= k , and there

exists T0 > 0 such that
q∑

j=1

ykt = 0 in ω × (0,T0). Then

yj = 0 in Ω× (0,T0), ∀j .
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Simultaneous stabilization

Proof sketch:

Decompose the solution y of the uncoupled elastodynamic equations
as: y = w + z where w satisfies the damped system

wjtt − µj∆wj − (µj + λj)∇div(wj) + 1ω
q∑

k=1

wkt = 0 in Ω× (0,∞)

wj = 0 on Γ× (0,∞)
wj(x ,0) = y0

j (x), wjt (x ,0) = y1
j (x), in Ω,

j = 1, 2, ..., q,

and z is the solution of the system

zjtt − µj∆zj − (µj + λj)∇div(zj) = 1ω
q∑

k=1

wkt in Ω× (0,∞)

zj = 0 on Γ× (0,∞)
zj(x ,0) = 0, zjt (x ,0) = 0, in Ω,
j = 1, 2, ..., q.
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Simultaneous stabilization

Thanks to Theorem 2, we have

lim
t→∞

Ew (t) = 0.

On the other hand, the energy method shows

Ez(t) =

∫ t

0

∫
ω

q∑
k=1

pkt (x , s)

q∑
j=1

zjt (x , s) dxds

=

∫ t

0

∫
ω

q∑
k=1

ykt (x , s)

q∑
j=1

zjt (x , s) dxds

−
∫ t

0

∫
ω

∣∣∣∣∣
q∑

k=1

zkt (x , s)

∣∣∣∣∣
2

dxds.

So, if
q∑

j=1

ykt = 0 in ω × (0,T0) for some T0 > 0, then Ez(t) = 0 for all

t ∈ [0,T0].
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Simultaneous stabilization

Consequently, y = w on Ω× (0,T0). We know that for every ε > 0,
there exists a time Tε > 0, such that

t > Tε ⇒ Ew (t) < ε.
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Simultaneous stabilization

Lamé systems with localized damping

Theorem4: Exponential stability

Let (y0
j , y

1
j )j ∈

([
H1

0 (Ω)
]N × [L2(Ω)

]N)q
. Suppose

µj 6= µk , λj + 2µj 6= λk + 2µk , and λjµk = λkµj , ∀j , k , j 6= k .

Assume that ω satisfies the Liu geometric control condition, and
suppose that the damping is effective in ω:

∃d0 > 0 : d(x) ≥ d0 a.e. ω.

There exist positive constants M and κ, independent of the initial data,
such that the following energy decay estimate holds:

E(t) ≤ Me−κtE(0), for all t ≥ 0.

Proof method: FDM, multipliers technique, Huang or Prüss criterion.
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Simultaneous stabilization

An observability result

Let T > 0. Let ω be a nonempty open set in Ω satisfying the Liu
geometric control condition. Consider the uncoupled elastodynamic
system

yjtt − µj∆yj − (µj + λj)∇div(yj) = 0 in Ω× (0,T )
yj = 0 on Γ× (0,T )
yj(x ,0) = y0

j (x), yjt (x ,0) = y1
j (x), in Ω,

j = 1, 2, ..., q.

There exists T0 > 0 such that for any T > T0, there exists C > 0:

E(0) ≤
∫ T

0

∫
ω
|

q∑
j=1

yjt (x , t)|2 dxdt ,

provided that

µj 6= µk , λj + 2µj 6= λk + 2µk , and λjµk = λkµj , ∀j , k , j 6= k .
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Simultaneous stabilization

Euler-Bernoulli Plate-wave system

Consider the damped system
ytt −∆y + d(x)(yt + zt ) = 0 in Ω× (0,∞)
ztt + ∆2z + d(x)(yt + zt ) = 0 in Ω× (0,∞)
y = 0, z = 0, ∂νz = 0 on Γ× (0,∞)
y(0) = y0 ∈ H1

0 (Ω), yt (0) = y1 ∈ L2(Ω),
z(0) = z0 ∈ H2

0 (Ω), zt (0) = z1 ∈ L2(Ω).

The total energy is given, for all t ≥ 0, by

2E(t) =

∫
Ω
{|yt (x , t)|2 + |∇y(x , t)|2 + |zt (x , t)|2 + |∆z(x , t)|2}dx ,
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Simultaneous stabilization

Euler-Bernoulli Plate-wave system

E is a nonincreasing function of the time variable as

dE
dt

= −
∫

Ω
d(x) |yt (x , t) + zt (x , t)|2 dx .

Question 1: Does the energy E decay to zero as time goes to infinity?
Question 2: Under which conditions is the system exponentially
stable?
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Simultaneous stabilization

Euler-Bernoulli Plate-wave system

Theorem 4: Strong stability

Let ω be an arbitrary nonvoid open set contained in Ω. Suppose that
the damping coefficient d is positive in ω.
The system is strongly stable:

lim
t→∞

E(t) = 0

provided that either meas(∂ω ∩ ∂Ω) > 0, or else, the only solution of
∆u = −u in Ω and u = 0 on ∂Ω is u = 0.
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Simultaneous stabilization

Another new unique continuation result

Let T > 0. Let ω be an arbitrary nonvoid open set contained in Ω.
Consider the uncoupled system

ytt −∆y = 0 in Ω× (0,T )
ztt + ∆2z = 0 in Ω× (0,T )
y = 0, z = 0, ∂νz = 0 on Γ× (0,T ).

There exists T0 > 0 such that for any T > T0,

yt + zt = 0 in ω × (0,T )⇒ y = 0 and z = 0 in Ω× (0,T ),

provided that meas(∂ω ∩ ∂Ω) > 0,or else, the only solution of ∆u = −u
in Ω and u = 0 on ∂Ω is u = 0.
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Simultaneous stabilization

Euler-Bernoulli Plate-wave system

Theorem 5: Exponential stability

Let (y0, y1) ∈ H1
0 (Ω)× L2(Ω) and (z0, z1) ∈ H2

0 (Ω)× L2(Ω) .
Assume that ω satisfies the Liu geometric control condition, and
suppose that the damping is effective in ω:

∃d0 > 0 : d(x) ≥ d0 a.e. ω.

There exist positive constants M and κ, independent of the initial data,
such that the following energy decay estimate holds:

E(t) ≤ Me−κtE(0), for all t ≥ 0.
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Simultaneous stabilization

An observability inequality

Let T > 0. Let ω be a nonempty open set in Ω satisfying the Liu
geometric control condition.
Consider the uncoupled system

ytt −∆y = 0 in Ω× (0,T )
ztt + ∆2z = 0 in Ω× (0,T )
y = 0, z = 0, ∂νz = 0 on Γ× (0,T ).

There exists T0 > 0 such that for any T > T0, there exists C > 0:

E(0) ≤
∫ T

0

∫
ω
|yt (x , t) + zt (x , t)|2 dxdt ,

Louis Tebou (FIU, Miami) Simultaneous and indirect control of waves... Monastir, 06/18-20/2019 29 / 47



Simultaneous stabilization

Timoshenko beam

Let L > 0, and set Ω = (0,L), and ω = (l1, l2) with 0 ≤ l1 < l2 ≤ L.
Consider the damped Timoshenko system:{

ρ1ytt − k(yx + z)x + a(x)(yt + zt ) = 0 in (0,L)× (0,∞)
ρ2ztt − σzxx + k(yx + z) + a(x)(yt + zt ) = 0 in (0,L)× (0,∞),

with the boundary conditions:

(DD) y(0, t) = 0, y(L, t) = 0, z(0, t) = 0, z(L, t) = 0, or else

(DN) y(0, t) = 0, y(L, t) = 0, zx (0, t) = 0, zx (L, t) = 0, t > 0

and the initial conditions:
y(x ,0) = y0(x), yt (x ,0) = y1(x), z(x ,0) = z0(x), zt (x ,0) = z1(x), x ∈ Ω.

The damping coefficient a is a nonnegative bounded measurable
function, which is positive in ω only.
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Simultaneous stabilization

The energy and main questions

Introduce the energy

E(t) =
1
2

∫
Ω
{ρ1|yt (x , t)|2 + k |yx (x , t) + z(x , t)|2}dx

+1
2

∫
Ω{ρ2|zt (x , t)|2 + σ|zx (x , t)|2}dx , ∀t ≥ 0.

The energy E is a nonincreasing function of the time variable t as we
have for every t ≥ 0, (hereafter, ′ denotes differentiation with respect to
time)

E ′(t) = −
∫

Ω
a(x)|yt (x , t) + zt (x , t)|2 dx .

As before, our main purpose is to answer the following questions:
Does the energy E(t) decay to zero as the time variable t goes to
infinity?
If so, how fast? And if not, why?
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Simultaneous stabilization

Timoshenko beam

Theorem 6: Strong stability

Suppose that ω is an arbitrary nonempty open interval in Ω. Let the
damping coefficient a be positive in ω. In either of the (DD) or (DN)
case, the associated system is strongly stable:

lim
t→∞

E(t) = 0

if and only if ∂ω ∩ ∂Ω 6= ∅.
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Simultaneous stabilization

Timoshenko beam

Theorem 7: Exponential stability
Suppose that ω is an arbitrary nonempty open interval in Ω with
∂ω ∩ ∂Ω 6= ∅. Let the damping coefficient a satisfy

a(x) ≥ a0 > 0, a.e. in ω.

There exist positive constants M and κ, independent of the initial data,
such that the following energy decay estimate holds:

E(t) ≤ Me−κtE(0), for all t ≥ 0.
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Indirect stabilization

Brief literature

Notion explicitly introduced by Russell (1993), involves a coupled
system of second order evolution equations where the damping occurs
in one component of the system only.

We can broaden the notion to account for thermoelasticity or
fluid-structure models where the dissipation is induced by the heat or
parabolic component only.

Other contributors include Dafermos, Lasiecka and collaborators,
Burns and collaborators, Lebeau-Zuazua, Perla Menzala-Zuazua,
Rauch-Zhang-Zuazua, Triggiani-Avalos, Zhang-Zuazua, Alabau,
Alabau-Cannarsa-Komornik,...
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Indirect stabilization

Mindlin-Timoshenko plate

ρ1ytt − kdiv(∇y + z) = 0 in Ω× (0,∞)
ρ2ztt − µ∆z − (λ+ µ)∇divz + k(∇y + z) + azt = 0 in Ω× (0,∞)
y = 0, z = 0 on ∂Ω× (0,∞)
y(.,0) = y0 ∈ H1

0 (Ω), yt (.,0) = y1 ∈ L2(Ω),
z(.,0) = z0 ∈ [H1

0 (Ω)]N , zt (.,0) = z1 ∈ [L2(Ω)]N .

In the one-dimensional setting, the system , known as the Timoshenko
beam equations, describes the motion of a beam when the effects of
rotatory inertia are accounted for; the transverse displacement is
represented by y while z denotes the shear angle displacement.
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Indirect stabilization

In 2D, that system is known as the Mindlin-Timoshenko plate
equations, where y represents the vertical deflection and z stands for
the rotation angles of a filament.

The constants ρ1, ρ2, k , and µ are physical constants and are all
positive. In particular, the constants λ and µ are the Lamé constants
with λ+ µ > 0.
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Indirect stabilization

Mindlin-Timoshenko plate

2009: Fernández-Sare shows that the system is polynomially stable.

2011: Nicaise generalizes and improves Fernandez-Sare result to
account for anisotropic cases, but still, only polynomial stability is
established.

It is well-known that the indirectly damped Timoshenko beam, (N = 1),
is exponentially stable if and only if

(∗) k
ρ1

=
2µ+ λ

ρ2
.

Questions: Is the Mindlin-Timoshenko system exponentially stable
under (∗)? What happens when (∗) fails?
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Indirect stabilization

Energy estimates

Introduce the energy

E(t) =
1
2

∫
Ω
{ρ1|yt (x , t)|2 + k |∇y(x , t) + z(x , t)|2}dx

+
1
2

∫
Ω
{ρ2|zt (x , t)|2 + µ|∇z(x , t)|2 + (λ+ µ)|divz(x , t)|2}dx , ∀t ≥ 0.

Let ω satisfy Liu geometric constraint. Suppose that the damping
coefficient a further satisfies

∃a0 > 0 : a(x) ≥ a0, a.e. ω.
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Indirect stabilization

Energy estimates

If (∗) holds, then the energy decays exponentially:

∃M > 0, ∃ζ > 0 : E(t) ≤ Me−ζtE(0), ∀t ≥ 0.

If (∗) fails, then the energy decays polynomially:

∃M = M(initial data) > 0, ∃ζ > 0 : E(t) ≤ M
(1 + t)

,

provided
(y0, y1) ∈ (H2(Ω) ∩ H1

0 (Ω))× H1
0 (Ω)

and
(z0, z1) ∈ [(H2(Ω) ∩ H1

0 (Ω))]N × [H1
0 (Ω)]N .
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Indirect stabilization

Kirchhoff plate-wave

Joint work with Ahmed Hajej (U. Cergy-Pontoise, France) and
Zayd Hajjej (U. Gabes, Tunisia)
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Indirect stabilization

Undamped Kirchhoff plate/ damped wave

Consider the following weakly coupled system of Kirchhoff plate and
wave equations:



utt − γ∆utt + ∆2u + αv = 0 in Ω× (0,∞)

vtt −∆v + vt + αu = 0 in Ω× (0,∞)

u = ∂νu = 0 on Γ0 × (0,∞)

∆u + (1− µ)B1u = 0 on Γ0 × (0,∞)

∂ν∆u − γ∂νutt + (1− µ)B2u = 0 on Γ1 × (0,∞)

v = 0 on Γ× (0,∞)

u(0) = u0 ∈ V , ut (0) = u1 ∈ H1
0 (Ω),

v(0) = v0 ∈ H1
0 (Ω), vt (0) = v1 ∈ L2(Ω).
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Indirect stabilization

Undamped Kirchhoff plate/ damped wave

Ω is an open set of R2 with regular boundary Γ = ∂Ω = Γ0 ∪ Γ1 such
that Γ0 ∩ Γ1 = ∅,
The constant γ > 0 is the rotational inertia of the plate and the
constant 0 < µ < 1

2 is the Poisson coefficient.
The boundary operators B1, B2 are defined by

B1u = 2ν1ν2uxy − ν2
1uyy − ν2

2uxx ,

B2u = ∂τ

(
(ν2

1 − ν2
2)uxy + ν1ν2(uyy − uxx )

)
,

where ν = (ν1, ν2) is the unit outer normal vector to Γ and
τ = (−ν2, ν1) is a unit tangent vector.
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Indirect stabilization

Energy estimates.

Introduce the energy, (setting Pγu = u − γ∆u)

E(t) =
1
2

∫
Ω
{|P

1
2
γ ut |2 + |∆u|2 + |vt |2 + |∇v |2 + 2αuv}(x , t) dx .

We have:

E(t) ≤ Cα

(t + 1)
1
3

(
||u0||2H3(Ω) + ||u1||2H2(Ω) + ||v0||2H2(Ω) + ||v1||2H1

0 (Ω)

)
.

FDM, interpolation, good choice of functional inequalities,
Borichev-Tomilov criterion.
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Indirect stabilization

Damped Kirchhoff plate/ undamped wave



utt − γ∆utt + ∆2u + αv + ut = 0 in Ω× (0,∞)

vtt −∆v + αu = 0 in Ω× (0,∞)

u = ∂νu = 0 on Γ0 × (0,∞)

∆u + (1− µ)B1u = 0 on Γ0 × (0,∞)

∂ν∆u − γ∂νutt + (1− µ)B2u = 0 on Γ1 × (0,∞)

v = 0 on Γ× (0,∞)

u(0) = u0 ∈ V , ut (0) = u1 ∈ H1
0 (Ω),

v(0) = v0 ∈ H1
0 (Ω), vt (0) = v1 ∈ L2(Ω).
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Indirect stabilization

Energy estimates.

Introduce the energy

E(t) =
1
2

∫
Ω
{|pγut |2 + |∆u|2 + |vt |2 + |∇v |2 + 2αuv}(x , t) dx .

We have:

E(t) ≤ Cα

(t + 1)
1
4

(
||u0||2H3(Ω) + ||u1||2H2(Ω) + ||v0||2H2(Ω) + ||v1||2H1

0 (Ω)

)
.
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Extensions and open problems.

1 Obtaining logarithmic energy decay estimates in the case of
simultaneous stabilization in the multidimensional setting when ω
is an arbitrary nonempty open subset of Ω.

2 What about the case of indefinite damping mechanism?
3 The case of nonlinear multi-component systems is also open.
4 The fractional versions of those problems are widely open.
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Final Thought

And if anyone thinks that he knows anything, he
knows nothing yet as he ought to know.

THANKS!
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