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Notations

Ω= bounded domain in RN , N ≥ 1,
Γ= boundary of is smooth,
T > 0, Q = × (0,T )
ω = nonvoid open subset in Ω.
a1, a2, ..., aq, (q ≥ 2) are pairwise distinct positive constants.
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The wave equations

Controllability

Consider the controllability problem: Given
(y0

j , y
1
j )j ∈

(
L2(Ω)× H−1(Ω)

)q, find a control v ∈ [H1(0,T ; L2(ω))]′

such that if the q-tuple (yj)j solves the system

yjtt − aj∆yj = v1ω in Q
yj = 0 on Γ× (0,T )
yj(x ,0) = y0

j (x), yjt (x ,0) = y1
j (x) in Ω,

j = 1, 2, ..., q,

then for each j = 1, 2, ..., q

yj(x ,T ) = 0, yjt (x ,T ) = 0, in Ω.
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The wave equations

Remark

T and ω must be large enough.

Lions’ HUM reduces exact controllability to an inverse
(observability) estimate for the adjoint system.
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The wave equations

Observability

Consider the uncoupled adjoint system

ujtt − aj∆uj = 0 in Q
uj = 0 on Γ× (0,T )
uj(x ,0) = u0

j (x), ujt (x ,0) = u1
j (x) in Ω, j = 1, 2, ..., q,

where (u0
j ,u

1
j ) ∈ H1

0 (Ω)× L2(Ω) for each j .

Haraux (1988) showed for arbitrary ω:
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The wave equations

If
∑q

j=1 uj(x , t) = 0 in ω × (0,T ) then u0
j = 0, u1

j = 0 in Ω, ∀j .

If N = 1 and T is large enough, or ω = Ω, then for all j and all
(u0

j ,u
1
j ) ∈ L2(Ω)× H−1(Ω)

∑q
j=1{||u

0
j ||

2
L2(Ω)

+ ||u1
j ||2H−1(Ω)

} ≤ C
∫ T

0

∫
ω |
∑q

j=1 uj(x , t)|2 dxdt .

(GCC) [Bardos-Lebeau-Rauch, 1988, 1992]: every ray of
geometric optics enters ω in a time less than T .
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The wave equations

Theorem 1
Let T0 denote the best controllability time for a single wave equation
with unit speed of propagation. Suppose that

T > T0 max{a−
1
2

j ; j = 1, 2, ..., q} and (ω,T ) satisfies (GCC). There
exists a constant C > 0 such that for all (u0

j ,u
1
j ) ∈ H1

0 (Ω)× L2(Ω),
j = 1, 2, ..., q:

q∑
j=1

{||u0
j ||

2
H1

0 (Ω)
+ ||u1

j ||2L2(Ω)} ≤ C
∫ T

0

∫
ω
|

q∑
j=1

ujt (x , t)|2 dxdt ,

with C = C(Ω, ω,T , (aj)j ,q).

Louis Tebou (Florida International University)Simultaneous controllability and stabilization of some uncoupled wave and plate equationsOrlando, July 4, 2012 8 / 27



The wave equations

Proof: key elements

Thanks to Bardos-Lebeau-Rauch

q∑
j=1

{||u0
j ||

2
H1

0 (Ω)
+ ||u1

j ||2L2(Ω)} ≤ C
∫ T

0
r(t)

∫
ω
η(x)

q∑
j=1

|ujt (x , t)|2 dxdt .

Elementary algebra shows∑q
j=1{||u

0
j ||

2
H1

0 (Ω)
+ ||u1

j ||2L2(Ω)
} ≤ C

∫ T
0

∫
ω |
∑q

j=1 ujt (x , t)|2 dxdt

−2C
∑

1≤j<k≤q

∫
Q rηujtukt dxdt .
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The wave equations

With aj 6= ak for j 6= k , a combination of algebra and calculus
shows ∑q

j=1{||u
0
j ||

2
H1

0 (Ω)
+ ||u1

j ||2L2(Ω)
}

≤ C
∫ T

0

∫
ω |
∑q

j=1 ujt (x , t)|2 dxdt

+C
∫

Q
∑q

j=1 |uj(x , t)|2 dxdt .

Claim:∫
Q
∑q

j=1 |uj(x , t)|2 dxdt ≤ C0
∫ T

0

∫
ω

∣∣∣∑q
j=1 ujt (x , t)

∣∣∣2 dxdt ,

∀(u0
j ,u

1
j )j ∈ (H1

0 (Ω)× L2(Ω))q.
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The wave equations

Suppose that the claim fails. Then there are initial data in
(H1

0 (Ω)× L2(Ω))q for which

∫
Q

q∑
j=1

|uj(x , t)|2 dxdt = 1,
q∑

j=1

ujt (x , t) = 0 in ω × (0,T ).

The contradiction follows from
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The wave equations

Unique continuation result.

Lemma
Let ω be an arbitrary nonvoid open subset in Ω. Let T , the constants
ajs, and the initial data be given as in Theorem 1. Then

q∑
j=1

ujt (x , t) = 0 in ω × (0,T )⇒ uj ≡ 0 in Q.
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The wave equations

Remark

It follows from Theorem 1 that for all (u0
j ,u

1
j )j ∈

(
L2(Ω)× H−1(Ω)

)q

Ê(0) ≤ C0

∫ T

0

∫
ω

∣∣∣∣∣∣
q∑

j=1

uj(x , t)

∣∣∣∣∣∣
2

dxdt ,

where 2Ê(0) =

q∑
j=1

(
||u0

j ||
2
L2(Ω) + ||u1

j ||2H−1(Ω)

)
.
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The wave equations

Stabilization

Given (y0
j , y

1
j )j ∈

(
H1

0 (Ω)× L2(Ω)
)q, and a function d ∈ L∞(Ω), d ≥ 0,

consider the damped system

yjtt − aj∆yj + d
∑q

k=1 ykt = 0 in Ω× (0,∞)
yj = 0 on Γ× (0,∞)
yj(x ,0) = y0

j (x), yjt (x ,0) = y1
j (x), in Ω,

j = 1, 2, ..., q.

The total energy is given, for all t ≥ 0, by

2E(t) =

q∑
j=1

∫
Ω
{|yjt (x , t)|2 + aj |∇yj(x , t)|2}dx ,

and it is a nonincreasing function of the time variable as

dE
dt

= −
∫

Ω
d(x)

∣∣∣∣∣
q∑

k=1

ykt (x , t)

∣∣∣∣∣
2

dx .
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The wave equations

Let ω be a nonvoid open subset in Ω, and suppose that the damping is
effective in ω, viz.: ∃a0 > 0 : d(x) ≥ a0 a.e. in ω. The two questions
that we would like to answer are the following:

does the energy E(t) decays to zero as t →∞?

If ω satisfies (GCC), do we have a uniform exponential decay of
E(t) in the energy space?
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The wave equations

Theorem 2

Let (y0
j , y

1
j )j ∈

(
H1

0 (Ω)× L2(Ω)
)q. Suppose that the constants aj ,

j = 1, 2, ..., q, are pairwise distinct.
i) Assume that ω is a nonvoid open subset in Ω, and that the damping
is effective in ω. Then the energy E satisfies lim

t→∞
E(t) = 0.

ii) Assume that ω satisfies (GCC), and suppose that the damping is
effective in ω. There exists positive constants M = M(Ω, ω,T ,a,q,d),
and µ = µ(Ω, ω,T ,a,q,d) such that the following energy decay
estimate holds

E(t) ≤ Me−µtE(0), for all t ≥ 0.
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The wave equations

Sketch of the proof of Theorem 2

1 If one denotes by A the underlying unbounded operator, then A
generates a C0 semigroup of contractions (S(t))t≥0 on
H = (H1

0 (Ω)× L2(Ω))q. Further, A has a compact resolvent; so the
spectrum σ(A) is discrete. Next, one shows that A has no purely
imaginary eigenvalue. The stability theorem in Arendt-Batty
(1988) yields the claimed strong stability result.

2 Thanks to Theorem 1 above, and a result of Haraux (1989), which
establishes an equivalence between observability and stabilization
for second order evolution equations with bounded damping
operators, the claimed exponential decay follows.
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The plate equations.

Controllability

Consider the controllability problem: Given
(z0

j , z
1
j )j ∈

(
L2(Ω)× H−2(Ω)

)q, find a control v ∈ [H1(0,T ; L2(ω))]′

such that if the q-tuple (zj)j solves the system

zjtt + aj∆
2zj = v1ω in Q

zj = 0, ∂νzj = 0 on Γ× (0,T )
zj(x ,0) = z0

j (x), zjt (x ,0) = z1
j (x) in Ω,

j = 1, 2, ..., q,

then for each j = 1, 2, ..., q

zj(x ,T ) = 0, zjt (x ,T ) = 0, in Ω.
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The plate equations.

Remark

T may be chosen arbitrarily small.

It is not clear that ω has to be big enough.
Lions’ HUM reduces exact controllability to an inverse
(observability) estimate for the adjoint system.
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The plate equations.

Inverse inequality

Consider the uncoupled adjoint system

wjtt + aj∆
2wj = 0 in Q

wj = 0, ∂νwj = 0 on Γ× (0,T )
wj(x ,0) = w0

j (x), wjt (x ,0) = w1
j (x) in Ω,

j = 1, 2, ..., q,

where (w0
j ,w

1
j ) ∈ H1

0 (Ω)× L2(Ω) for each j .
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The plate equations.

Theorem 3
Let T > 0 be arbitrary. Suppose that ω is big enough (cf. e.g. [Russell
(1973), Lions (1988)]). Assume that the constants aj , j = 1, 2, ..., q,
are pairwise distinct. There exists a constant C > 0 such that for all
(w0

j ,w
1
j ) ∈ H2

0 (Ω)× L2(Ω), j = 1, 2, ..., q:

q∑
j=1

{||w0
j ||

2
H2

0 (Ω)
+ ||w1

j ||2L2(Ω)} ≤ C
∫ T

0

∫
ω

∣∣∣∣∣∣
q∑

j=1

wjt (x , t)

∣∣∣∣∣∣
2

dxdt ,

with C = C(Ω, ω,T , (aj)j ,q).
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The plate equations.

Remark

It follows from Theorem 3 that for all (w0
j ,w

1
j )j ∈

(
L2(Ω)× H−2(Ω)

)q

Ẽ(0) ≤ C0

∫ T

0

∫
ω

∣∣∣∣∣∣
q∑

j=1

wj(x , t)

∣∣∣∣∣∣
2

dxdt ,

where 2Ẽ(0) =

q∑
j=1

(
||w0

j ||
2
L2(Ω) + ||w1

j ||2H−2(Ω)

)
.
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The plate equations.

Stabilization

Given (z0
j , z

1
j )j ∈

(
H2

0 (Ω)× L2(Ω)
)q, and a function d ∈ L∞(Ω), d ≥ 0,

consider the damped system

zjtt + aj∆
2zj + d

∑q
k=1 zkt = 0 in Ω× (0,∞)

zj = 0, ∂νzj = 0 on ∂Ω× (0,∞)
zj(x ,0) = z0

j (x), zjt (x ,0) = z1
j (x), in Ω,

j = 1, 2, ..., q.

The total energy is now given, for all t ≥ 0, by

2E(t) =

q∑
j=1

∫
Ω
{|zjt (x , t)|2 + aj |∆zj(x , t)|2}dx ,

and it is a nonincreasing function of the time variable as

dE
dt

= −
∫

Ω
d(x)

∣∣∣∣∣
q∑

k=1

zkt (x , t)

∣∣∣∣∣
2

dx
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The plate equations.

Let ω be a nonvoid open subset in Ω, and suppose that the damping is
effective in ω, viz.: ∃a0 > 0 : d(x) ≥ a0 a.e. in ω. The two questions
that we would like to answer are the following:

does the energy E(t) decays to zero as t →∞?

If ω is big enough, do we have a uniform exponential decay of E(t)
in the energy space?
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The plate equations.

Theorem 4

Let (z0
j , z

1
j )j ∈

(
H2

0 (Ω)× L2(Ω)
)q. Suppose that the constants aj ,

j = 1, 2, ..., q, are pairwise distinct.
i) Let ω be a nonvoid open subset in Ω, and suppose that the
damping is effective in ω. Then the energy E satisfies lim

t→∞
E(t) = 0.

ii) Assume that ω is big enough, and suppose that the damping is
effective in ω. There exists positive constants M = M(Ω, ω,T ,a,q,d),
and µ = µ(Ω, ω,T ,a,q,d) such that the following energy decay
estimate holds

E(t) ≤ Me−µtE(0), for all t ≥ 0.
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Extensions and open problems.

The analogous of Theorems 1, 2 hold for the plate equations with
hinged boundary conditions (cf. Liu (1995)).

A potential of the form ajp(x) may be added to the wave or plate
equations discussed. The potential p being nonnegative in the
stabilization problems.
The case of nonconstant coefficients may be discussed using
Riemannian geometry (cf. Lasiecka-Triggiani-Yao (1999)).
The case of boundary controllability or stabilization is widely open
in higher space dimensions. For 1-d boundary controllability, cf.
e.g. Komornik-Loreti book (2005)). The 1-d boundary stabilization
is also open.
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equations discussed. The potential p being nonnegative in the
stabilization problems.
The case of nonconstant coefficients may be discussed using
Riemannian geometry (cf. Lasiecka-Triggiani-Yao (1999)).
The case of boundary controllability or stabilization is widely open
in higher space dimensions. For 1-d boundary controllability, cf.
e.g. Komornik-Loreti book (2005)). The 1-d boundary stabilization
is also open.
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Extensions and open problems.

And if anyone thinks that he knows anything, he
knows nothing yet as he ought to know.

THANKS!
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