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Initial work

In 2003, Zhang and Zuazua considered the following system

ytt − yxx = 0 in (−1,0)× (0,∞)
zt − zxx = 0 in (0,1)× (0,∞)
y(0) = y0 ∈ V , yt(0) = y1 ∈ L2(−1,0)
z(0) = z0 ∈ L2(0,1)
y(−1, t) = 0, z(1, t) = 0 in (0,∞)
yt(0−, t) = z(0+, t), yx(0−, t) = zx(0+, t) in (0,∞).

The space V = {u ∈ H1(−1,0);u(−1) = 0}.
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Energy Dissipation

The energy of this system is given by:

E(t) =
1
2

∫ 0

−1
{|yt(x , t)|2 + |yx(x , t)|2}dx +

∫ 1

0
|z(x , t)|2 dx

and it is nonincreasing, as we have the dissipation law:

dE
dt

(t) = −
∫ 1

0
|zx(x , t)|2 dx , ∀t ≥ 0.

They proved the optimal decay of the energy (Riesz basis method):

∃C0 > 0 : E(t) ≤
C0

(
||y0||2H2(−1,0) + ||y1||2V + ||z0||2H1(0,1)

)
(1 + t)4 , ∀t ≥ 0.
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The multidimensional problem

In 2006, the same authors considered the multi-dimensional
counterpart under various geometric configurations. They proved
under some geometric constraint the following decay estimate of the
energy:

∃C0 > 0 : E(t) ≤
C0

(
||y0||2H2(Ωw )

+ ||y1||2H1(Ωw )
+ ||z0||2H1(Ωp)

)
(1 + t)

1
3

, ∀t ≥ 0.

They conjectured that the exponent 1/3 should be replaced by 2.
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The multidimensional problem

In 2007, Duyckaerts improved the last decay estimate:

∀s < 2, ∃Cs > 0 :

E(t) ≤
Cs

(
||y0||2H2(Ωw )

+ ||y1||2H1(Ωw )
+ ||z0||2H1(Ωp)

)
(1 + t)s , ∀t ≥ 0.

The geometric optics approach is utilized and the domain must have a
C∞ boundary.
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The multidimensional problem

In 2008, Avalos and Triggiani considered the multidimensional problem
where the parabolic component is replaced by Stokes equation and a
suitable boundary damping is added at the interface. They proved the
exponential decay of the energy; namely:

∃C0 > 0, ∃α > 0 : E(t) ≤ C0e−αtE(0), ∀t ≥ 0.

A nonlinear counterpart of this Avalos-Triggiani work (linear
wave/Navier-Stokes equations) was analyzed by Lasiecka and Lu
[2012].
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A new system

Let α ∈ (0,1) be a constant. Let a ∈ C1([0,1]). Consider the following
hyperbolic/parabolic transmission system

ytt − (a(x)yx)x = 0 in (−1,0)× (0,∞)
zt − (xαzx)x = 0 in (0,1)× (0,∞)
y(−1, t) = 0, z(1, t) = 0 in (0,∞)
yt(0−, t) = z(0+, t), a(0)yx(0−, t) = (xαzx)(0+, t) in (0,∞).
y(0) = y0 ∈ V , yt(0) = y1 ∈ L2(−1,0), z(0) = z0 ∈ L2(0,1),

and
∃a0 > 0 : a(x) ≥ a0, ∀x ∈ [−1,0].



The energy of the new system

The energy of this system is given by:

E(t) =
1
2

∫ 0

−1
{|yt(x , t)|2 + a(x)|yx(x , t)|2}dx +

∫ 1

0
|z(x , t)|2 dx .

Now, we have the dissipation law:

dE
dt

(t) = −
∫ 1

0
xα|zx(x , t)|2 dx , ∀t ≥ 0.



A new decay rate

This new system with a ≡ 1 was first considered by Han, Wang and
Wang [2020] who showed that the corresponding semigroup (Sα(t))t≥0

decays at the rate O(t−
(3−α)

2(1−α) ).

Positive: The decay rate depends on α and becomes better and
better as α approaches 1.
Negative: The decay rate is clearly not optimal; as α ↘ 0, the rate
is just O(t−

3
2 ), which is very far from the optimal decay rate

O(t−2).
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Theorem 1 (2022)

(Wave/parabolic model) For every α ∈ (0,1), there exist positive
constants K0 and Kα such that the semigroup (Sα(t))t≥0 satisfies for
every t ≥ 0:

||Sα(t)Z 0|| ≤



K0||Z 0||D(Aα)

(1 + t)2 if 0 < α ≤ 1/4

K0||Z 0||D(Aα)

(1 + t)
3

2(1−α)

, if 1/4 ≤ α ≤ 1/2

K0||Z 0||D(Aα)

(1 + t)
(9−6α)
4(1−α)

, if 1/2 ≤ α ≤ 3/4

Kα||Z 0||D(Aα)

(1 + t)
(3−α)

2(1−α)

, if 3/4 ≤ α < 1

∀Z 0 ∈ D(Aα),

where the constant Kα ↗ ∞ as α ↗ 1.



Key elements of the proof

Thanks to Borichev-Tomilov polynomial stability criterion [2010], it
suffices to prove

iR ⊂ ρ(Aα).
There exists Cα > 0 such that for every U ∈ H, one has:

||(iλI −Aα)
−1U|| ≤ Cα|λ|s||U||, ∀ λ ∈ R, with |λ| ≥ λα

for some λα > 1,
with the exponent s given by

s =



1/2 if 0 < α ≤ 1/4,

2(1−α)
3 if 1/4 ≤ α ≤ 1/2,

4(1−α)
9−6α if 1/2 ≤ α ≤ 3/4,

2(1−α)
3−α if 3/4 ≤ α < 1.



The transmission system

Let α in [0,1). Let d ∈ C2([−1,0]. Consider now the following system

ytt + (d(x)yxx)xx = 0 in (−1,0)× (0,∞)
zt − (xαzx)x = 0 in (0,1)× (0,∞)
y(−1, t) = 0, yx(−1, t) = 0, yxx(0−, t) = 0, z(1, t) = 0 in (0,∞)
yt(0−, t) = z(0+, t), (dyxx)x(0−, t) = −(xαzx)(0+, t) in (0,∞)
y(0) = y0 ∈ W , yt(0) = y1 ∈ L2(−1,0)
z(0) = z0 ∈ L2(0,1),

with the space W given by

W = {u ∈ H2(−1,0);u(−1) = ux(−1) = 0},

and
∃d0 > 0 : d(x) ≥ d0, ∀x ∈ (−1,0).



The energy is dissipative

The energy of this system is given by

E2(t) =
1
2

∫ 0

−1
{|yt(x , t)|2 + d(x)|yxx(x , t)|2}dx +

1
2

∫ 1

0
|z(x , t)|2 dx ,

and one readily checks that this energy is a noincreasing function of
the time variable as

d
dt

E2(t) = −
∫ 1

0
xα|zx(x , t)|2 dx , for a.e. t ≥ 0.



Theorem 2 (2022)

(EB beam/parabolic model.) For every α ∈ [0,1), the semigroup
(S̃α(t))t≥0 is exponentially stable; there exist positive constants
K0 ≥ 1, independent of α, and µα such that for every t ≥ 0:

||S̃α(t)Z 0|| ≤ K0e−µαt ||Z 0||, ∀Z 0 ∈ H̃,

where the constant µα ↘ 0 as α ↗ 1.
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Work in progress: new results

Theorem 3
(Wave/parabolic model.) For every α ∈ (0,1), the semigroup
(Sα(t))t≥0 is polynomially stable; there exists a positive constant Kα

such that for every t ≥ 0:

||Sα(t)Z 0|| ≤
Kα||Z 0||D(Aα)

(1 + t)
(2−α)
(1−α)

, ∀Z 0 ∈ D(Aα),

where the constant Kα ↗ ∞ as α ↗ 1.



Work in progress: new results

Theorem 4
(EB beam/parabolic model.) For every α ∈ [0,1), the semigroup
(Ŝα(t))t≥0 is of Gevrey class δ for every t > 0, and for every
δ > (2 − α)/(1 − α). In particular, there exists a positive constant Cα

such that the following resolvent estimate holds

lim sup
|λ|→∞

|λ|
1−α
2−α ||(iλI − Âα)

−1||L(Ĥ) ≤ Cα,

with Cα ↗ ∞ as α ↗ 1.



Open problems

1 The multidimensional case with a degenerate parabolic
component is open.

2 What happens when the degeneracy occurs inside the parabolic
component domain instead of occuring at the interface?

3 Semigroup regularity issues for plate/parabolic models. For
plate/parabolic models, exponential decay of the energy has been
established, e.g. Avalos-Geredeli recent result [2020].
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And if anyone thinks that he knows anything, he
knows nothing yet as he ought to know.

THANKS!
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