
Simultaneous controllability of some uncoupled
semilinear wave equations

Louis Tebou

Florida International University

AMS Meeting
Knoxville

March 22, 2014

Louis Tebou (FIU, Miami) Controllability... uncoupled semilinear wave equationsKnoxville, March 22, 2014 1 / 25



Overview

The asymptotically linear case.

The superlinear case.
Comments and open problems.

Louis Tebou (FIU, Miami) Controllability... uncoupled semilinear wave equationsKnoxville, March 22, 2014 2 / 25



Overview

The asymptotically linear case.
The superlinear case.

Comments and open problems.

Louis Tebou (FIU, Miami) Controllability... uncoupled semilinear wave equationsKnoxville, March 22, 2014 2 / 25



Overview

The asymptotically linear case.
The superlinear case.
Comments and open problems.

Louis Tebou (FIU, Miami) Controllability... uncoupled semilinear wave equationsKnoxville, March 22, 2014 2 / 25



Notations

Ω= bounded domain in RN , N ≥ 1,
Γ= boundary of Ω is smooth,
T > 0, Q = Ω× (0,T )
ω = nonvoid open subset in Ω.
a1, a2, ..., aq, (q ≥ 2) are pairwise distinct positive constants.
∆b = ∂i(bij(x)∂j), (Einstein summation convention used on Latin
letters, but not on Greek letters.)
The coefficients bij are smooth and satisfy the standard ellipticity
condition.
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The asymptotically linear case

Problem formulation

Consider the controllability problem: Given (y0
α, y1

α)α and (z0
α, z1

α)α in(
H1

0 (Ω)× L2(Ω)
)q, and a smooth function f : R→ R with

∃C > 0, σ ≥ 0 : |f (s)− f (r)| ≤ C|s − r |(1 + |s|σ + |r |σ), ∀s, r ∈ R,
lim sup|s|→∞

f (s)
s = λ for some λ ∈ R

∀ε > 0, ∃Cε > 0 : |f (s)− λs| ≤ Cε + ε|s|, ∀s ∈ R,

find a control v ∈ L2(0,T ; L2(ω)) such that if the q-tuple (yα)α solves
the system 

yα,tt − aα∆byα + aαf (yα) = v1ω in Q
yα = 0 on Γ× (0,T )
yα(x ,0) = y0

α(x), yα,t (x ,0) = y1
α(x) in Ω,

α = 1, 2, ..., q,
then for each α = 1, 2, ..., q

yα(x ,T ) = z0
α(x), yα,t (x ,T ) = z1

α(x), in Ω.
Louis Tebou (FIU, Miami) Controllability... uncoupled semilinear wave equationsKnoxville, March 22, 2014 4 / 25



The asymptotically linear case

Remark

T and ω must be large enough.

In particular, ω and T satisfy the geometric control condition:
(GCC) [Bardos-Lebeau-Rauch, 1988, 1992]: every ray of
geometric optics enters ω in a time less than T .

To tackle the nonlinear control problem at hand, we shall follow the
standard procedure:

1 introduce a linearized control problem,

2 solve the linear control problem,

3 use a fixed-point theorem to derive the controllability of the
nonlinear problem from that of the linearized system.
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The asymptotically linear case

Linearized Control Problem

Let the data be as above. For each 1 ≤ α ≤ q, let pα ∈ L2(Q) be
arbitrary. Introduce the linear controllability problem: Find a control
v ∈ L2(0,T ; L2(ω)) such that if the q-tuple (yα)α solves the system

yα,tt − aα∆byα + aαλyα = aα(−f (pα) + λpα) + v1ω in Q
yα = 0 on Γ× (0,T )
yα(x ,0) = y0

α(x), yα,t (x ,0) = y1
α(x) in Ω,

α = 1, 2, ..., q,

then for each α = 1, 2, ..., q

yα(x ,T ) = z0
α(x), yα,t (x ,T ) = z1

α(x) in Ω.
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The asymptotically linear case

Section main results

Theorem 1

Suppose that Ω is of class C3, and the coefficients bij lie in C2(Ω̄).
Assume that ω satisfies the Bardos-Lebeau-Rauch geometric control
condition. Suppose that the constants aα, α = 1, 2, ..., q, are pairwise
distinct. Assume that λ > −λ1, where λ1 is the first eigenvalue of −∆b
with Dirichlet boundary conditions.

Let T > T0 max{a−
1
2

α ;α = 1, 2, ..., q}, where T0 is the controllability
time corresponding to the single linear hyperbolic equation, (f ≡ 0),
with aα = 1. For all (y0

α, y1
α), and (z0

α, z1
α) in H1

0 (Ω)× L2(Ω),
(α = 1, 2, ..., q), there exists a control v ∈ L2(0,T ; L2(ω)) such that
the corresponding solution of the linearized system satisfies the
prescribed final conditions.
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The asymptotically linear case

Proof of Theorem 1: key elements

First, we show the following observability estimate

Ê(0) ≤ C0

∫ T

0

∫
ω

∣∣∣∣∣
q∑

α=1

uα(x , t)

∣∣∣∣∣
2

dxdt , ∀(u0
α,u

1
α)α ∈

(
L2(Ω)× H−1(Ω)

)q
,

where 2Ê(0) =

q∑
α=1

(
||u0

α||2L2(Ω) + ||u1
α||2H−1(Ω)

)
, for every solution of the

system
uα,tt − aα∆buα + aαλuα = 0 in Q
uα = 0 on Σ = Γ× (0,T )
uα(.,0) = u0

α ∈ L2(Ω), uα,t (.,0) = u1
α ∈ H−1(Ω), α = 1, 2, ..., q.
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The asymptotically linear case

To prove the observability estimate, introduce for each α, the new

function wα(x , t) =

∫ t

0
uα(x , s) ds + zα(x), with zα ∈ H1

0 (Ω) satisfying

−aα∆bzα + aαλzα = −u1
α in Ω. Then wα solves

wα,tt − aα∆bwα + aαλwα = 0 in Q
wα = 0 on Σ = Γ× (0,T )
wα(.,0) = zα ∈ H1

0 (Ω), wα,t (.,0) = u0
α ∈ L2(Ω), α = 1, 2, ..., q.

Thanks to Bardos-Lebeau-Rauch observability estimate for a single
wave equation, one has for appropriate cut-off functions:

||zα||2H1
0 (Ω)

+ ||u0
α||2L2(Ω) ≤ C

∫ T

0
r(t)

∫
ω
η|wα,t (x , t)|2 dxdt .
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The asymptotically linear case

Elementary algebra shows

q∑
α=1

{||zα||2H1
0 (Ω)

+ ||u0
α||2L2(Ω)} ≤ C

∫ T

0

∫
ω
|

q∑
α=1

wα,t (x , t)|2 dxdt

−2C
∑

1≤α<β≤q

∫
Q

rηwα,twβ,t dxdt .

Use Green’s theorem and algebra to get:

2E(0) ≤ C
∫ T

0

∫
ω

∣∣∣∣∣
q∑

α=1

wα,t (x , t)

∣∣∣∣∣
2

dxdt

−2C
∑

1≤α<β≤q

1
aα − aβ

[∫
Q

r ′η(aβwβwα,t − aαwαwβ,t ) dxdt

+aαaβ
∫

Q
r(wαbij∂jwβ − wβbij∂jwα)∂iη dxdt

]
.
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The asymptotically linear case

With aα 6= aβ for α 6= β, a combination of algebra and calculus
shows

q∑
α=1

{||zα||2H1
0 (Ω)

+ ||u0
α||2L2(Ω)}

≤ C
∫ T

0

∫
ω
|

q∑
α=1

wα,t (x , t)|2 dxdt

+C
∫

Q

q∑
α=1

|wα(x , t)|2 dxdt .

Claim:∫
Q

q∑
α=1

|wα(x , t)|2 dxdt ≤ C0

∫ T

0

∫
ω

∣∣∣∣∣
q∑

α=1

wα,t (x , t)

∣∣∣∣∣
2

dxdt .
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The asymptotically linear case

Suppose that the claim fails. Then there are initial data in
(H1

0 (Ω)× L2(Ω))q for which

∫
Q

q∑
j=1

|uj(x , t)|2 dxdt = 1,
q∑

j=1

ujt (x , t) = 0 in ω × (0,T ).

The contradiction follows from
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The asymptotically linear case

Unique continuation result.

Lemma
Let ω be an arbitrary nonvoid open subset in Ω. Let T , λ, the constants
aα, and the initial data be given as in Theorem 1. Then

q∑
α=1

wα,t (x , t) = 0 in ω × (0,T )⇒ wα ≡ 0 in Q, ∀α.

Louis Tebou (FIU, Miami) Controllability... uncoupled semilinear wave equationsKnoxville, March 22, 2014 13 / 25



The asymptotically linear case

The exact controllability of the linear system may be established by
relying on the Hilbert Uniqueness Method (HUM) of Lions, or by
minimizing the functional

J : [L2(Ω)]q × [H−1(Ω)]q → R, given by
J (u0,u1) = 1

2

∫ T
0

∫
ω |
∑q

α=1 uα|2 dxdt −
∫

Ω

∑q
α=1 z1

αuα(T ) dx
+
∑q

α=1〈uαt (T ), z0
α〉+

∑q
α=1

∫
Ω y1

αu0
α dx −

∑q
α=1〈u

1
α, y0

α〉
−
∫

Q
∑q

α=1 aα(pα − f (pα))uα dxdt ,

where 〈, 〉 denotes the duality product between H−1(Ω) and H1
0 (Ω).
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The asymptotically linear case

Theorem 2
Under the hypotheses of Theorem 1, the nonlinear system is exactly

controllable; in other words, for T > T0 max{a−
1
2

α ;α = 1, 2, ..., q}, and
for all (y0

α, y1
α), and (z0

α, z1
α) in H1

0 (Ω)× L2(Ω), (α = 1, 2, ..., q), there
exists a control v ∈ L2(0,T ; L2(ω)) such that the corresponding
solution of the nonlinear system satisfies the prescribed final
conditions.
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The asymptotically linear case

Proof of Theorem 2: main ideas

Define the nonlinear mapping K : [L2(Q)]q → [L2(Q)]q by
K (p) = y , where p = (pα)α and y = (yα)α is the solution of the
controlled linearized system. The mapping K is well-defined by
Theorem 1.

K is continuous, and maps any closed ball Br of [L2(Q)]q to Br

K (Br ) is compact in Br . Finally apply Schauder’s fixed-point
theorem.
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The super-linear case

Problem formulation

Let f : R× R× RN 7−→ R be a continuously differentiable function with
f (0,0,0) = 0, that satisfies for some p ≥ 1 and some constant L > 0:
∀s, s′, τ, τ ′ ∈ R, ∀ζ, ζ ′ ∈ RN

|f (s, τ, ζ)− f (s′, τ ′, ζ ′)| ≤ L(|s− s′|(|s|p−1 + |s′|p−1) + |τ − τ ′|+ |ζ − ζ ′|),
with (N − 2)p ≤ N.
Given (y0

α, y1
α), and (z0

α, z1
α) in H1

0 (Ω)× L2(Ω), (1 ≤ α ≤ q), find a
control function v ∈ L2(0,T ; L2(ω)) such that if the q-tuple (yα)q

α=1
solves the system of wave equations:

yα,tt − aα∂i(bij(x)∂jyα) + f (yα, yαt ,∇yα) = v1ω in Q
yα = 0 on Σ = ∂Ω× (0,T )
yα(0) = y0

α; yα,t (0) = y1
α in Ω,

then one has

yα(x ,T ) = z0
α(x), yα,t (x ,T ) = z1

α in Ω.
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The super-linear case

Section main result

Theorem 3

Suppose that Ω is of class C3, and the coefficients bij lie in C2(Ω̄).
Assume that ω satisfies the Bardos-Lebeau-Rauch geometric control
condition. Suppose that the constants aα, α = 1, 2, ..., q, are pairwise
distinct. Assume that λ > −λ1, where λ1 is the first eigenvalue of −∆b
with Dirichlet boundary conditions.

Let T > T0 max{a−
1
2

α ;α = 1, 2, ..., q}, where T0 is the controllability
time corresponding to the single linear hyperbolic equation, (f ≡ 0),
with aα = 1. For all (y0

α, y1
α), and (z0

α, z1
α) in H1

0 (Ω)× L2(Ω),
(α = 1, 2, ..., q), with small enough norms, there exists a control
v ∈ L2(0,T ; L2(ω)) such that the corresponding solution of the
nonlinear system satisfies the prescribed final conditions.
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The super-linear case

Proof of Theorem 3: key elements

Iterative method.

Let y0 = (y0α)α ∈ [L∞(H1
0 (Ω))]q ∩ [W 1,∞(0,T ; L2(Ω))]q, and for

each positive integer n, introduce the system

ynα,tt − aα∂i(bij(x)∂jynα) + f (y(n−1)α, y(n−1)α,t ,∇y(n−1)α)
= vn1ω in Q
ynα = 0 on Σ
ynα(0) = y0

α; ynα,t (0) = y1
α in Ω.

First, show that for each n ≥ 1, one can find a control vn in
L2(0,T ; L2(ω)) such that for every α, the solution yn = (ynα)α of
the linear system satisfies the desired final conditions.
Then prove that the sequence (vn) converges strongly in
L2(0,T ; L2(ω)) to a function v which is a control for the nonlinear
system.
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The super-linear case

For every n ≥ 1, introduce the functional

Jn : [L2(Ω)]q × [H−1(Ω)]q → R, given by

Jn(u0,u1) = 1
2

∫ T

0

∫
ω
|

q∑
α=1

uα|2 dxdt −
∫

Ω

q∑
α=1

z1
αu0

α dx

+

q∑
α=1

〈u1
α, z

0
α〉+

q∑
α=1

∫
Ω

y1
αuα(x ,0) dx

−
∑q

α=1〈uα,t (0), y0
α〉 −

∫
Q

q∑
α=1

f (y(n−1)α, y(n−1)αt ,∇y(n−1)α)uα dxdt ,

where u = (uα)α solves the adjoint system

uα,tt − aα∂i(bij(x)∂juα) = 0 in Q
uα = 0 on Σ
uα(T ) = u0

α, uα,t (T ) = u1
α in Ω.

The functional Jn is continuous, strictly convex, and coercive.
Consequently, Jn has a unique minimizer (û0

n , û1
n).
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The super-linear case
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∫
ω
|

q∑
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uα|2 dxdt −
∫

Ω

q∑
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z1
αu0

α dx

+

q∑
α=1

〈u1
α, z

0
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Ω
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The super-linear case

Choose vn =

q∑
α=1

ûnα, where ûn = (ûnα)α is the solution of the

u-system associated with (û0
n , û1

n).

Use the Euler equation:

∫ T
0

∫
ω

q∑
α=1

ûnαuα dxdt −
∫

Ω

q∑
α=1

z1
αu0

α dx +

q∑
α=1

〈u1
α, z

0
α〉

+

q∑
α=1

∫
Ω

y1
αuα(x ,0) dx −

q∑
α=1

〈uα,t (0), y0
α〉

=
∫

Q
∑q

α=1 f (y(n−1)α, y(n−1)α,t ,∇y(n−1)α)uα dxdt

to show that the sequence of controls (vn) is bounded:∫ T

0

∫
ω

(vn)2 dxdt ≤ C0(E0 + E1) + C0L2(wn−1 + wp
n−1),

with wn = ||yn||2L∞(0,T ;H1
0 (Ω))

+ ||yn,t ||2L∞(L2(0,T ;Ω))
.
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The super-linear case

Use energy estimates to derive:

wn ≤ C0(E0 + E1) + C0L2(wn−1 + wp
n−1), ∀n ≥ 1.

Let A ≥ 1 be some constant such that

w0 ≤ 2A, C0(E0 + E1) ≤ A, 2p+1C0L2Ap−1 < 1.

Use an induction argument to derive that for every n ≥ 1

wn < 2A,
∫ T

0

∫
ω

(vn)2 dxdt < 2A.

Use those estimates and the Euler equation once more to show
that (vn) is a Cauchy sequence in L2(0,T ; L2(ω) while (yn) is a
Cauchy sequence in C([0,T ]; H1

0 (Ω)) ∩ C1([0,T ]; L2(Ω)).
Derive that (vn) converges to a certain function v in
L2(0,T ; L2(ω)), which is a control for the nonlinear system.
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Comments and open problems.

Systems of uncoupled wave equations arise from the study of
networks of strings (one-dimensional setting), or from the
linearized models of chemical reactions with diffusion in
multicomponent systems (J. Chem. Phys. 67 (1977), 3382.) They
were introduced in the control framework by Russell in his
investigation of the boundary controllability of the Maxwell
equations.

Haraux (1988) showed for arbitrary ω:

If
q∑

α=1

uα(x , t) = 0 in ω × (0,T ) then u0
α = 0, u1

α = 0 in Ω, ∀α.

If N = 1 and T is large enough, or ω = Ω, then for all j and all
(u0
α,u1

α) ∈ L2(Ω)× H−1(Ω):

q∑
α=1

{||u0
α||2L2(Ω) + ||u1

α||2H−1(Ω)} ≤ C
∫ T

0

∫
ω

|
q∑

α=1

uα(x , t)|2 dxdt .
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Comments and open problems.

The analogues of Theorems 1, 3 hold for the plate equations with
various boundary conditions.

Extending the observability estimate to the case of a potential
depending on both the space and time variables is open.
Extending the results to the boundary controllability setting is
widely open in higher space dimensions; apparently exact
boundary controllability in the standard energy space is not to be
expected according to the one-dimensional observability estimate
of e.g. Komornik-Loreti, ( Chap. 9, book (2005)).
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Comments and open problems.

And if anyone thinks that he knows anything, he
knows nothing yet as he ought to know.

THANKS!
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