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The simultaneously damped system

Problem formulation

Let L > 0, and set Ω = (0,L), and ω = (l1, l2) with 0 ≤ l1 < l2 ≤ L.
Consider the damped Timoshenko system:{

ρ1ytt − k(yx + z)x + a(x)(yt + zt ) = 0 in (0,L)× (0,∞)
ρ2ztt − σzxx + k(yx + z) + a(x)(yt + zt ) = 0 in (0,L)× (0,∞),

with the boundary conditions:

(DD) y(0, t) = 0, y(L, t) = 0, z(0, t) = 0, z(L, t) = 0, or else

(DN) y(0, t) = 0, y(L, t) = 0, zx (0, t) = 0, zx (L, t) = 0, t > 0

and the initial conditions:
y(x ,0) = y0(x), yt (x ,0) = y1(x), z(x ,0) = z0(x), zt (x ,0) =

z1(x), x ∈ Ω.

The damping coefficient a is a nonnegative bounded measurable
function, which is positive in ω only.
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The simultaneously damped system

Remark

The Timoshenko system describes the motion of a beam when the
effects of rotatory inertia are accounted for; y= transverse
displacement, and z = shear angle displacement.

The type of damping used here naturally arises in the modeling of
mixtures of elastic materials [Dafermos, SIAP 1970].

The fact that this damping is degenerate makes the stabilization
problem more challenging to analyze.
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The simultaneously damped system

The energy and main questions

Introduce the energy

E(t) = 1
2

∫
Ω{ρ1|yt (x , t)|2 + k |yx (x , t) + z(x , t)|2}dx

+1
2

∫
Ω{ρ2|zt (x , t)|2 + σ|zx (x , t)|2}dx , ∀t ≥ 0.

The energy E is a nonincreasing function of the time variable t as we
have for every t ≥ 0, (hereafter, ′ denotes differentiation with respect to
time)

E ′(t) = −
∫

Ω
a(x)|yt (x , t) + zt (x , t)|2 dx .

Our main purpose in this section of the talk is to answer the following
questions:

Does the energy E(t) decay to zero as the time variable t goes to
infinity?
If so, how fast? And if not, why?
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The simultaneously damped system

An abstract framework

Set Z =


y
y ′

z
z ′

. Our initial system may then be recast as:

Z ′ −AZ = 0 in (0,∞), Z (0) =


y0

y1

z0

z1


where the unbounded operator A is given by

A =


0 I 0 0

k
ρ1
∂2

x − a
ρ1

I k
ρ1
∂x − a

ρ1
I

0 0 0 I
− k

ρ2
∂x − a

ρ2
I σ

ρ2
∂2

x − k
ρ2

I − a
ρ2

I
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The simultaneously damped system

In the (DD) case:
D(A) =

{
(u, v ,w , z) ∈

(
H1

0 (Ω)× H1
0 (Ω)

)2
; k(ux + w)x − a(v + z) ∈

L2(Ω), and σwxx − k(ux + w)− a(v + z) ∈ L2(Ω)
}

and, in the (DN)
case:
D(A) =

{
(u, v ,w , z) ∈ (H1

0 (Ω))2 × V 2; k(ux + w)x − a(v + z) ∈

L2(Ω), and σwxx − k(ux + w)− a(v + z) ∈ L2(Ω)
}

V = {u ∈ H1(Ω);
∫

Ω u(x) dx = 0}.
One checks that in the (DD) case, one has
D(A) =

(
(H2(Ω) ∩ H1

0 (Ω))× H1
0 (Ω)

)2

In the (DN) case, D(A) = (H2(Ω)∩H1
0 (Ω))×H1

0 (Ω)× (H2(Ω)∩V )×V .
Thus, in either case, the operator A has a compact resolvent.
Consequently the spectrum of A is discrete.
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The simultaneously damped system

Introduce the Hilbert spaces over the field C of complex numbers
H1 =

(
H1

0 (Ω)× L2(Ω)
)2 and H2 = H1

0 (Ω)× L2(Ω)× V × L2(Ω),
equipped with the norm

||Z ||2Hi
=
∫

Ω{ρ1|v |2 + k |ux + w |2 + ρ2|z|2 + σ|wx |2}dx ,

∀Z = (u, v ,w , z) ∈ Hi , i = 1, 2.

Louis Tebou (FIU, Miami) Stabilization of the Timoshenko beam Memphis, October 17, 2015 8 / 22



The simultaneously damped system

Main results and proof ideas

Theorem 1
Suppose that ω is an arbitrary nonempty open interval in Ω. Let the
damping coefficient a be positive in ω. In either of the (DD) or (DN)
case, the associated operator A generates a C0 semigroup of
contractions (Si(t))t≥0 on the corresponding Hilbert space Hi , (i=1, 2),
which is strongly stable:

lim
t→∞
||Si(t)Z 0||H = 0, ∀Z 0 ∈ Hi ,

if and only if ∂ω ∩ ∂Ω 6= ∅.
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The simultaneously damped system

Proof of Theorem 1: key elements

Semigroup generation: pretty straightforward thanks to
Lumer-Phillips Theorem.
Strong stability: Thanks to a Benchimol result, it suffices to show
that A has no imaginary eigenvalue.

One easily checks that zero is not an eigenvalue of A. Now, let b be a
nonzero real number, and let Z = (u, v ,w , z) ∈ D(A) such that
AZ = ibZ . We shall prove that Z = (0,0,0,0) if and only if
∂ω ∩ ∂Ω 6= ∅. Note that AZ = ibZ may be recast as:

−b2u − k̂(ux + w)x + ibâ(u + w) = 0 in (0,L)

−b2w − σ̂wxx + ǩ(ux + w) + ibǎ(u + w) = 0 in (0,L).

One easily checks that u = −w in ω.
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The simultaneously damped system

The heart of the matter now is to check under which condition, one has
u ≡ 0 in ω; indeed, if we can prove that u ≡ 0 in ω, then w ≡ 0 in ω,
and basic uniqueness results may then be invoked to conclude that
Z = (0,0,0,0). Therefore, it remains to find under which condition
u ≡ 0 in ω. Since u = −w in ω, our system reduces to:

−b2u − k̂(ux − u)x = 0 in ω
b2u + σ̂uxx + ǩ(ux − u) = 0 in ω.

Adding both equations, one gets rid of b, thereby obtaining

(σ̂ − k̂)uxx + (k̂ + ǩ)ux − ǩu = 0 in ω.
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The simultaneously damped system

The characteristic equation for this equation is is given by:

(σ̂ − k̂)r2 + (k̂ + ǩ)r − ǩ = 0.

Using the latter equation, one shows that u ≡ 0 in ω when
∂ω ∩ ∂Ω 6= ∅, and that the operator A does have imaginary
eigenvalues if ∂ω ∩ ∂Ω = ∅. Hence the associated semigroup is
strongly stable if and only if ∂ω ∩ ∂Ω 6= ∅.
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The simultaneously damped system

Theorem 2
Suppose that ω is an arbitrary nonempty open interval in Ω with
∂ω ∩ ∂Ω 6= ∅. Let the damping coefficient a satisfy

a(x) ≥ a0 > 0, a.e. in ω.

For each i = 1, 2, the semigroup (Si(t))t≥0 is exponentially stable,
viz., there exist positive constants M and λ with

||Si(t)Z 0||Hi ≤ M exp(−λt)||Z 0||Hi , ∀Z 0 ∈ Hi .
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The simultaneously damped system

Proof of Theorem 2: main ideas

Set ω = (l1,L). We focus on the (DD) case, and set H = H1. Thanks
to results due to Pruss, and Huang, it suffices to show:

1 iR ⊂ ρ(A)

2 sup{||(ib −A)−1||L(H); b ∈ R} <∞

The first point follows from the proof of Theorem 1.
Proving the second point amounts to showing:

∃C0 > 0 : ∀U ∈ H, one has ||(ib −A)−1U||H ≤ C0||U||H, ∀b ∈ R.

Now, let b ∈ R, U = (f ,g,h, l) ∈ H, and let Z = (u, v ,w , z) ∈ D(A)
such that

(ib −A)Z = U.

We shall prove:
||Z ||H ≤ C0||U||H.

Louis Tebou (FIU, Miami) Stabilization of the Timoshenko beam Memphis, October 17, 2015 14 / 22



The simultaneously damped system

Our initial estimate:∫
Ω

a(x)|v(x) + z(x)|2 dx = <(U,Z ) ≤ ||U||H||Z ||H.

Recast the U-Z equation as:

ibu − v = f
ibv − k̂(ux + w)x + â(v + z) = g
ibw − z = h
ibz − σ̂wxx + ǩ(ux + w) + ǎ(v + z) = l .
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The simultaneously damped system

Using appropriate multipliers, we arrive at (for large enough |b|)

ǩb2|u|22 + ǩ k̂ |ux + w |22 + σ̂b2|w |22 + σ̂2|wx |22
≤ C0b2 ∫

Ω η
2(|u|2 + |w |2) dx + C0(||U||H||Z ||H + ||U||

1
2
H||Z ||

3
2
H + ||U||2H)

≤ C0b2 ∫
Ω η

2|u + w |2 dx−2C0b2<
∫

Ω η
2uw̄ dx

+C0(||U||H||Z ||H + ||U||
1
2
H||Z ||

3
2
H + ||U||2H).

Resorting once more to adequate multipliers, we find

−b2(σ̂ − k̂)<
∫

Ω η
2uw̄ dx = σ̂<

∫
Ω((ĝ + ibf )η2 − 2k̂ηxη(ux + w))w̄ dx

−k̂<
∫

Ω((̂l + ibh − ǩ(ux + w))η2ū − 2σ̂ηxηwx ū + σ̂w̄xw) dx .
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The simultaneously damped system

If k̂ 6= σ̂, one then gets the estimate:

ǩb2|u|22 + ǩ k̂ |ux + w |22 + σ̂b2|w |22 + σ̂2|wx |22
≤ C0(||U||H||Z ||H + ||U||

1
2
H||Z ||

3
2
H + ||U||2H).

If k̂ = σ̂, we need a different approach. Using the multiplier η2w̄ , we
derive

−b2<
∫

Ω η
2uw̄ dx = −k̂<

∫
Ω η

2ux w̄x dx

−k̂<
∫

Ω(η2wx + 2ηxη(ux + w))w̄ dx + <
∫

Ω(ĝ + ibf )η2w̄ dx .

Introduce ϕ = u + w , which solves:

−b2ϕ− k̂ϕxx = ĝ + l̂ + ib(f + h) + k̂wx − ǩ(ux + w) in Ω.
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The simultaneously damped system

Using that equation, one checks that∫
Ω
η2|ϕx |2 dx ≤ C0(||U||H||Z ||H + ||U||2H + ||U||

1
2
H||Z ||

3
2
H).

With the help of the multiplier η2w̄x , we derive from the same equation:

k̂
∫

Ω η
2|wx |2 dx − ǩ<

∫
Ω η

2ux w̄x dx
= −<

∫
Ω(η2hx + 2ηxη(ibw̄ + h̄))ibϕdx − k̂<ϕx (L)wx (L)

+<
∫

Ω η
2ϕx (ǩ(ūx + w̄)− ¯̂l) dx

−<
∫

Ω η
2(ĝ + l̂ − ǩw)w̄x − ib(η2(f + h))x w̄ dx

≤ C0(||U||H||Z ||H + ||U||
1
2
H||Z ||

3
2
H + ||U||2H + ||U||

1
4
H||Z ||

7
4
H + ||U||

1
8
H||Z ||

15
8
H )

+C0|w |22.
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The simultaneously damped system

On the other hand, the estimate of ϕx leads to:∫
Ω η

2|wx |2 dx + <
∫

Ω η
2ux w̄x dx = <

∫
Ω η

2ϕx w̄x dx

≤ C0(||U||H||Z ||H + ||U||
1
2
H||Z ||

3
2
H + ||U||

1
4
H||Z ||

7
4
H).

It now follows from the last two inequalities:∣∣< ∫Ω η
2ux w̄x dx

∣∣
≤C0(||U||H||Z ||H + ||U||

1
2
H||Z ||

3
2
H + ||U||2H + ||U||

1
4
H||Z ||

7
4
H + ||U||

1
8
H||Z ||

15
8
H )

+C0|w |22.

Hence

ǩb2|u|22 + ǩ k̂ |ux + w |22 + σ̂b2|w |22 + σ̂2|wx |22
≤ C0(||U||H||Z ||H + ||U||

1
2
H||Z ||

3
2
H + ||U||2H + ||U||

1
4
H||Z ||

7
4
H + ||U||

1
8
H||Z ||

15
8
H ).
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The indirectly damped system

Problem formulation

Consider the new Timoshenko system:{
ρ1ytt − k(yx + z)x + a(x)yt = 0 in (0,L)× (0,∞)
ρ2ztt − σzxx + k(yx + z) = 0 in (0,L)× (0,∞).

Remark. Many stabilization problems for the indirectly damped
Timoshenko system involve the case where the damping appears in
the shear angle equation z, and exponential stability holds if and only if
k̂ = σ̂. This latter condition is never satisfied in the physically relevant
problem. So, for this reason, some authors have proposed using two
independent damping mechanisms, one in the transverse
displacement equation and the other one in the shear angle equation.
Using two independent feedback controls simplify the mathematical
analysis. It is then a natural question to wonder what would happen if
one were to use a single control, but now acting through the bending
equation instead.
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The indirectly damped system

Findings for the new system

When ω = Ω, exponential stability holds if and only if k̂ = σ̂,
whether we have (DD) or (DN).
One notes that in the (DN) case, even strong stability fails if ω 6= Ω.

In the (DD) case, when ω 6= Ω, strong stability holds if ω meets an
endpoint of Ω, and exponential decay holds if further k̂ = σ̂.

One notes here that the boundary conditions play a role in the stability
analysis, while they did not matter in earlier works.
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The indirectly damped system

And if anyone thinks that he knows anything, he
knows nothing yet as he ought to know.

THANKS!
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