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Notations

Ω= bounded domain in RN , N ≥ 1,
Γ= boundary of Ω is smooth,
T > 0, Q = Ω× (0,T )
ω = nonvoid open subset in Ω.
The coefficients matrix (bij)i,j , satisfies:

bij ∈ C1(Ω̄); bij = bji , ∀i , j = 1,2, ...,N,
∃a0 > 0 : bij(x)zizj ≥ a0zizi , ∀(x , z) ∈ Ω̄× RN .

The Einstein summation convention on repeated indices is used
throughout.
a, b, c, d lie in L∞(0,T ; Ls(Ω)), s ≥ max(2,N) for N 6= 2,
and s > 2 for N = 2.
kij , lij lie in W 1,∞

0 (0,T ; Ls(Ω)).

Louis Tebou (FIU, Miami, USA) Controllability...coupled hyperbolic systems BCAM, 2012 3 / 33



Hyperbolic equations with internal coupling

Controllability

Consider the controllability problems: Given (z0, z1) and (w0,w1), and
ε > 0, find a control h such that if (z,w) solves the system

ztt − ∂i(bij(x)∂jz) + az + cw − div(k11z)− (l11z)t
−div(k21w)− (l21w)t = h1ω in Q

wtt − ∂i(bij(x)∂jw) + bz + dw − div(k12z)− (l12z)t
−div(k22w)− (l22w)t = 0 in Q

z = 0, w = 0 on Σ = ∂Ω× (0,T )

z(0) = z0; zt (0) = z1 w(0) = w0; wt (0) = w1 in Ω,
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Hyperbolic equations with internal coupling

then (exact controllability)

z(T ) = 0, zt (T ) = 0, w(T ) = 0, wt (T ) = 0 in Ω,

or else (approximate controllability)

||z(T )||1 + ||zt (T )||2 ≤ ε, ||w(T )||1 + ||wt (T )||2 ≤ ε.
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Hyperbolic equations with internal coupling

Remark

For exact controllability, T and ω must be large enough.

For approximate controllability, only T must be large enough.
Lions’ HUM reduces exact controllability to an inverse
(observability) estimate for the adjoint system.
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Hyperbolic equations with internal coupling

Observability estimates

Consider the coupled (adjoint) system

utt − ∂i(bij(x)∂ju) + au + bv + k11 · ∇u + l11ut
+k12 · ∇v + l12vt = 0 in Q

vtt − ∂i(bij(x)∂jv) + cu + dv + k21 · ∇u + l21ut
+k22 · ∇v + l22vt = 0 in Q

u = 0, v = 0 on Σ = ∂Ω× (0,T )

u(0) = u0; ut (0) = u1 v(0) = v0; vt (0) = v1 in Ω.

The coupled system is well-posed in H1
0 (Ω)× L2(Ω)× L2(Ω)×H−1(Ω).
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Hyperbolic equations with internal coupling

Introduce the energies:

Eu(t) =
1
2

∫
Ω
{|ut (x , t)|2 + (bij(x)∂ju(x , t)∂iu(x , t)}dx ,

Êu(t) =
1
2

(
||u(., t)||2L2(Ω) + ||ut (., t)||2H−1(Ω)

)
.

For each t ∈ [0,T ], set

E(t) = Eu(t) + Êv (t), Ê(t) = Êu(t) + Êv (t).
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Hyperbolic equations with internal coupling

Introduce a function h ∈ C2(Ω̄) satisfying for some m0 ≥ 4:

i)
(
2bil(bkjhxk )xl − bij,xl bklhxk

)
zizj ≥ m0bijzizj , ∀(x , z) ∈ Ω̄× RN .

ii) min
{
|∇h(x)|; x ∈ Ω̄

}
> 0.

iii) 1
4bij(x)hxi (x)hxj (x) ≥ R2

1 ≥ R2
0 > 0, ∀x ∈ Ω̄,

where R0 = min
{√

h(x); x ∈ Ω̄
}

, and R1 = max
{√

h(x); x ∈ Ω̄
}

. Let
ν be the unit normal pointing into the exterior of Ω, and set

Γ0 =
{

x ∈ ∂Ω; bijνihxj (x) > 0
}
.
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Hyperbolic equations with internal coupling

Theorem 1
Let ω and O be neighborhoods of Γ0. Assume that
a, c, d ∈ L∞(0,T ; Ls(Ω)), with s > 2 for N ∈ {1, 2} and s ≥ N for
N ≥ 3. Let b ∈ L∞(Q), and let kij ∈ (W 1,s

0 (Q) ∩ L∞(Q))N ,
lij ∈W 1,s

0 (Q) ∩ L∞(Q), i , j = 1,2. Suppose that k12 ≡ 0, l12 ≡ 0,
supp(k22) ⊂ ω0 × (0,T ), and supp(l22) ⊂ ω0 × (0,T ), where ω0 is
another neighborhood of Γ0 whose closure ω̄0 is contained in O ∩ ω.
Suppose that there exists b0 > 0 such that b(x , t) ≥ b0 for almost
every (x , t) in O × (0,T ).

For every T > 2R1, there exists a positive constant C such that for all
(u0,u1) ∈ H1

0 (Ω)× L2(Ω), and (v0, v1) ∈ L2(Ω)× H−1(Ω), one has the
observability estimate:

E(0) ≤ C
∫ T

0

∫
ω

(|ut |2 + |u|2) dxdt

for the corresponding solution pair (u, v) of the adjoint system.
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Hyperbolic equations with internal coupling

Some comments

1 No smallness assumption is made on the zeroth order couplings.

2 The controllability time is the same as for a single wave equation.
3 The restrictions k12 ≡ 0 and l12 ≡ 0 are for well-posedness

purposes.
4 The support constraints on k22 and l22 are used in the proof of the

observability estimate to absorb some unwanted terms, but they
may be replaced with smallness constraints instead.

5 One may fairly wonder whether the observability estimate in
Theorem 1 may be replaced with

E(0) ≤ C
∫ T

0

∫
ω
|ut |2 dxdt .

But as noted in the case of a single wave equation, that estimate is
false in general, but holds under some constraints on the potential.

Louis Tebou (FIU, Miami, USA) Controllability...coupled hyperbolic systems BCAM, 2012 11 / 33



Hyperbolic equations with internal coupling

Some comments

1 No smallness assumption is made on the zeroth order couplings.
2 The controllability time is the same as for a single wave equation.

3 The restrictions k12 ≡ 0 and l12 ≡ 0 are for well-posedness
purposes.

4 The support constraints on k22 and l22 are used in the proof of the
observability estimate to absorb some unwanted terms, but they
may be replaced with smallness constraints instead.

5 One may fairly wonder whether the observability estimate in
Theorem 1 may be replaced with

E(0) ≤ C
∫ T

0

∫
ω
|ut |2 dxdt .

But as noted in the case of a single wave equation, that estimate is
false in general, but holds under some constraints on the potential.

Louis Tebou (FIU, Miami, USA) Controllability...coupled hyperbolic systems BCAM, 2012 11 / 33



Hyperbolic equations with internal coupling

Some comments

1 No smallness assumption is made on the zeroth order couplings.
2 The controllability time is the same as for a single wave equation.
3 The restrictions k12 ≡ 0 and l12 ≡ 0 are for well-posedness

purposes.

4 The support constraints on k22 and l22 are used in the proof of the
observability estimate to absorb some unwanted terms, but they
may be replaced with smallness constraints instead.

5 One may fairly wonder whether the observability estimate in
Theorem 1 may be replaced with

E(0) ≤ C
∫ T

0

∫
ω
|ut |2 dxdt .

But as noted in the case of a single wave equation, that estimate is
false in general, but holds under some constraints on the potential.

Louis Tebou (FIU, Miami, USA) Controllability...coupled hyperbolic systems BCAM, 2012 11 / 33



Hyperbolic equations with internal coupling

Some comments

1 No smallness assumption is made on the zeroth order couplings.
2 The controllability time is the same as for a single wave equation.
3 The restrictions k12 ≡ 0 and l12 ≡ 0 are for well-posedness

purposes.
4 The support constraints on k22 and l22 are used in the proof of the

observability estimate to absorb some unwanted terms, but they
may be replaced with smallness constraints instead.

5 One may fairly wonder whether the observability estimate in
Theorem 1 may be replaced with

E(0) ≤ C
∫ T

0

∫
ω
|ut |2 dxdt .

But as noted in the case of a single wave equation, that estimate is
false in general, but holds under some constraints on the potential.

Louis Tebou (FIU, Miami, USA) Controllability...coupled hyperbolic systems BCAM, 2012 11 / 33



Hyperbolic equations with internal coupling

Some comments

1 No smallness assumption is made on the zeroth order couplings.
2 The controllability time is the same as for a single wave equation.
3 The restrictions k12 ≡ 0 and l12 ≡ 0 are for well-posedness

purposes.
4 The support constraints on k22 and l22 are used in the proof of the

observability estimate to absorb some unwanted terms, but they
may be replaced with smallness constraints instead.

5 One may fairly wonder whether the observability estimate in
Theorem 1 may be replaced with

E(0) ≤ C
∫ T

0

∫
ω
|ut |2 dxdt .

But as noted in the case of a single wave equation, that estimate is
false in general, but holds under some constraints on the potential.

Louis Tebou (FIU, Miami, USA) Controllability...coupled hyperbolic systems BCAM, 2012 11 / 33



Hyperbolic equations with internal coupling

Some literature

Dáger (2006), Ω = (0,1), T ≥ 4, b = −1O, all other l.o.t vanish.
Proved a weaker estimate; see Theorem 2 in the sequel.

Tebou (2008), multi-d, b = −1O, all other l.o.t vanish.
Rosier-de Teresa (2011), Ω = (0,1), T ≥ 4, b = −a(x)2,
a ∈ L∞(Ω), all other l.o.t vanish.
Alabau-Leautaud (2012), c = b, d = a are smooth enough, and
||b||∞ is small, all other l.o.t vanish, ω and O may have empty
intersection, and both satisfy
(GCC) [Bardos-Lebeau-Rauch, 1988, 1992]: every ray of
geometric optics enters ω, (resp. O) in a time less than T .

But the controllability time blows up as the norm of the coupling
function b goes to zero; this is not natural. One would expect the
controllability cost to blow up as the coupling goes to zero, but not
the controllability time.
Tebou (2012), nonconservative systems.
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Hyperbolic equations with internal coupling

Proof of Theorem 1: key elements

Energy estimates show

E(0) ≤ C
∫

Q0

{|ut |2 + |∇u|2 + |v |2}dxdt ,

where Q0 is an appropriate subset of Q.

Fu-Yong-Zhang Carleman estimate shows∫
Q0

(|ut |2 + |∇u|2 + |v |2) dxdt ≤ Ce−µλE(0) + C
∫ T

0 r2 ∫
ω0
|v |2 dxdt

+C
∫ T

0

∫
ω(|ut |2 + |u|2) dxdt

where λ > 0 is large enough, and µ > 0 is fixed.

Use a localizing argument to absorb C
∫ T

0 r2 ∫
ω0
|v |2 dxdt .
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Hyperbolic equations with internal coupling

Set

δ = ||a||∞,s + ||b||∞,s + ||c||∞,s + ||d ||∞,s +
2∑

i,j=1

||div(kij)||∞,s

+
2∑

i,j=1

||lij,t ||∞,s

δ0 =
2∑

i,j=1

||kij ||∞ +
2∑

i,j=1

||lij ||∞

where ||.||∞,s = ||.||L∞(0,T ;Ls(Ω)), and ||.||∞ = ||.||L∞(Q).
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Hyperbolic equations with internal coupling

Theorem 2.
Let ω, O, a, d and s be as in Theorem 1, and suppose that
b ∈ L∞(0,T ; Ls(Ω)), c ∈ L∞(Q), and there exists b0 > 0 such that
b(x , t) ≥ b0 for almost every (x , t) in O × (0,T ). Let
kij ∈ (W 1,s

0 (Q) ∩ L∞(Q))N , lij ∈W 1,s
0 (Q) ∩ L∞(Q), i , j = 1,2. Suppose

that k21 ≡ 0, l21 ≡ 0, supp(kij) ⊂ ω0 × (0,T ), and
supp(lij) ⊂ ω0 × (0,T ).

For every T > 2R1, there exists a positive constant
C0 = C0(Ω, ω,O,T ,N, s) such that for all (u0,u1) ∈ L2(Ω)× H−1(Ω),
and (v0, v1) ∈ H1

0 (Ω)× L2(Ω), one has the observability estimate:

Ê(0)2 ≤ eC0(1+δ0+δ
2s

3s−2N )

(∫ T

0

∫
ω
|u|2 dxdt

)
(Êu(0) + Ev (0))

for all solution pair (u, v) of the adjoint system.
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Hyperbolic equations with internal coupling

Proof of Theorem 2: Main ideas

Step 1. Prove the energy estimates

Ê(t) ≤
[
exp C0(1 + δ0 + δ

N+s
2s )|t − τ |

]
Ê(τ), ∀τ, t ∈ [0,T ],

∫ T ′0

T0

hÊ(t) dt ≤ C0(1 + δ + δ0)

∫
Q0

{|u|2 + |v |2}dxdt ,

where h is an appropriate cut-off function.
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Hyperbolic equations with internal coupling

Step 2. Derive from Step 1

Ê(0) ≤ eC0(1+δ0+δ
N+s
2s )

∫
Q0

{|u|2 + |v |2}dxdt .

Step 3. Duyckaerts-Zhang-Zuazua Carleman estimate yields∫
Q0

(|u|2 + |v |2) dxdt ≤ e−C0λÊ(0) + eC0λ
∫ T

0

∫
ω |u|

2 dxdt
+eC0λ

∫ T
0 r2 ∫

ω0
|v |2 dxdt ,

for some constants C0 = C0(Ω,T ,N, s, ω) > 0, and for all
λ ≥ C0(1 + δ0 + δ

2s
3s−2N ).

Step 4. Use a localizing argument to absorb eC0λ
∫ T

0 r2 ∫
ω0
|v |2 dxdt .
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Hyperbolic equations with internal coupling

Let a, b, c, d ∈ Ls(Ω), with s as in Theorem 1. Assume now lij ≡ 0,
and kij ≡ 0, i , j = 1,2. Let ω, O, be as in Theorem 1, and suppose that
there exists b0 > 0 such that b(x) ≥ b0 for almost every x in O.
Further assume that either:

a ≥ 0, d ≥ 0, 2a− |b + c| ≥ 0, and 2d − |b + c| ≥ 0, a.e. x ∈ Ω

or else

a ≥ 0, d ≥ 0, a.e. x ∈ Ω, 1−C2
s |b + c|s > 0, and λ2

0−|b + c|s > 0,

where λ2
0 is the first eigenvalue of the operator −∂i(bij(x)∂j) under

Dirichlet boundary conditions, and Cs denotes the best constant in the
Sobolev inequality:

||w ||22s
s−2
≤ C2

s

∫
Ω

bij(x)∂jw(x)∂iw(x) dx , ∀w ∈ H1
0 (Ω).
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Hyperbolic equations with internal coupling

Theorem 3
Assume the hypotheses just stated. For every T > 2R1, there exists a
positive constant C0 = C0(Ω, ω,O,T ,N, s) such that for all
(u0,u1) ∈ H1

0 (Ω)× L2(Ω), and (v0, v1) ∈ (H2(Ω) ∩ H1
0 (Ω))× H1

0 (Ω),
one has the observability estimate:

(Eu(0) + Ev (0))2 ≤ eC0(1+δ
2s

3s−2N )

(∫ T

0

∫
ω
|ut |2 dxdt

)
(Eu(0) + Ěv (0))

for all solution pair (u, v) of the adjoint system, and where
2Ěv (0) = ||v0||2H2(Ω)

+ ||v1||2H1
0 (Ω)

.
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Hyperbolic equations with internal coupling

Sketch of the proof of Theorem 3

For this proof, we shall use Theorem 2, and the following result

Lemma
Let a, b, c, and d be given as in Theorem 3. Then there exists a
positive constant C0 = C0(Ω,b + c) such that

|| − ∂i(bij(x)∂ju) + au + bv ||2H−1(Ω)
+ || − ∂i(bij(x)∂jv) + cu + dv ||2H−1(Ω)

≥ C0
∫

Ω{bij(x)∂ju∂iu + bij(x)∂jv∂iv}dx , ∀u, v ∈ H1
0 (Ω).

Set ŵ = ut and ẑ = vt . Then these functions solve the system
ŵtt − ∂i(bij(x)∂jŵ) + aŵ + bẑ = 0 in Q
ẑtt − ∂i(bij(x)∂j ẑ) + cŵ + dẑ = 0 in Q
ŵ = 0, ẑ = 0 on Σ = ∂Ω× (0,T )
ŵ(0) = u1 ∈ L2(Ω); ŵt (0) = ∂i(bij(x)∂ju0)− au0 − bv0 ∈ H−1(Ω)
ẑ(0) = v1 ∈ H1

0 (Ω); ẑt (0) = ∂i(bij(x)∂jv0)− cu0 − dv0 ∈ L2(Ω).
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Hyperbolic equations with internal coupling

Introduce the following energy associated with that system

Êŵ ,ẑ(t) = Êŵ (t) + Êẑ(t) ∀t ∈ [0,T ].

Thanks to Theorem 2, one has:

Êŵ ,ẑ(0)2 ≤ eC0(1+δ
2s

3s−2N )

(∫ T

0

∫
ω
|ŵ |2 dxdt

)
(Êŵ (0) + Eẑ(0)).

Some elementary calculations show that

Êŵ (0) + Eẑ(0) ≤ C0(Eu(0) + Ěv (0)),

while the above Lemma yields

Êŵ ,ẑ(0) ≥ C0(Eu(0) + Ev (0)).

Hence

(Eu(0) + Ev (0))2 ≤ eC0(1+δ
2s

3s−2N )

(∫ T

0

∫
ω
|ut |2 dxdt

)
(Eu(0) + Ěv (0)).

Louis Tebou (FIU, Miami, USA) Controllability...coupled hyperbolic systems BCAM, 2012 21 / 33



Hyperbolic equations with internal coupling

Introduce the following energy associated with that system
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Êŵ (0) + Eẑ(0) ≤ C0(Eu(0) + Ěv (0)),
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Hyperbolic equations with internal coupling

Theorem 4
Suppose that the hypotheses of Theorem 3 hold. For every T > 2R1,
there exists a positive constant C = C(Ω, ω,O,T ,N, s,a,b, c,d) such
that for all (u0,u1) ∈ (H2(Ω) ∩ H1

0 (Ω))× H1
0 (Ω), and

(v0, v1) ∈ H1
0 (Ω)× L2(Ω), one has the observability estimate:

Ěu(0) + Ev (0) ≤ C
∫ T

0

∫
ω
{|ut |2 + |utt |2}dxdt .
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Hyperbolic equations with boundary coupling.

Controllability

Let f : R −→ R be a continuously differentiable function with

lim sup
|s|→∞

|f (s)|
|s|(log |s|)α

= β0,

for some β0 > 0, and some 0 ≤ α < 3/2. Consider now the
controllability problem: Given y0, ỹ0 ∈ H1

0 (Ω), and y1, ỹ1 ∈ L2(Ω);
q0, q̃0 ∈ L2(Ω), and q1, q̃1 ∈ H−1(Ω); and ξ ∈ L2(Q), can we find a
control v ∈ L2(0,T ; L2(ω)) such that the corresponding solution pair
(y0,q) of the cascade system:

y0tt − ∂i(bij(x)∂jy0) + f (y0) = ξ + vχω in Q
qtt − ∂i(bij(x)∂jq) + f ′(y0)q = 0 in Q
y0 = 0, q = ∂y0

∂νB
χΓ0 on Σ = ∂Ω× (0,T )

y0(0) = y0; y0t (0) = y1, q(0) = q0; qt (0) = q1 in Ω,

satisfies:
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Hyperbolic equations with boundary coupling.

y0(.,T ) = ỹ0, y0t (.,T ) = ỹ1, q(.,T ) = q̃0, qt (.,T ) = q̃1 in Ω?

For this system we have the controllability result:
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Hyperbolic equations with boundary coupling.

Theorem 5
Assume that ω is a neighborhood of Γ0. For every T > 2R1, and for all
y0 ∈ H1

0 (Ω), y1 ∈ L2(Ω), q0 ∈ L2(Ω) and q1 ∈ H−1(Ω), there exists a
control v ∈ L2(0,T ; L2(ω)) such that

y0(.,T ) = ỹ0, y0t (.,T ) = ỹ1, q(.,T ) = q̃0, qt (.,T ) = q̃1 in Ω.

To prove Theorem 5, we’re going to follow the classical algorithm for
solving control problems for nonlinear distributed systems:

1 linearize the control problem,

2 solve the linear control problem,

3 use a fixed-point theorem to derive the controllability of the
nonlinear problem from that of the linearized system.
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y0(.,T ) = ỹ0, y0t (.,T ) = ỹ1, q(.,T ) = q̃0, qt (.,T ) = q̃1 in Ω.

To prove Theorem 5, we’re going to follow the classical algorithm for
solving control problems for nonlinear distributed systems:

1 linearize the control problem,

2 solve the linear control problem,

3 use a fixed-point theorem to derive the controllability of the
nonlinear problem from that of the linearized system.

Louis Tebou (FIU, Miami, USA) Controllability...coupled hyperbolic systems BCAM, 2012 25 / 33



Hyperbolic equations with boundary coupling.

Theorem 5
Assume that ω is a neighborhood of Γ0. For every T > 2R1, and for all
y0 ∈ H1

0 (Ω), y1 ∈ L2(Ω), q0 ∈ L2(Ω) and q1 ∈ H−1(Ω), there exists a
control v ∈ L2(0,T ; L2(ω)) such that
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Hyperbolic equations with boundary coupling.

A bit of History of the controllability of semilinear wave
equations

Zuazua (1990-1991), HUM + Schauder fixed-point (linear growth)

Zuazua (1993), HUM + Leray-Schauder (1d, superlinear growth
allowed)
Lasiecka-Triggiani (1991), global inversion theorem (Lipschitz),
Cannarsa-Komornik-Loreti (1999), 1d, iterated log, improves
Zuazua (1993),
Li-Zhang (2000), Carleman estimates, superlinear growth allowed,
Martinez-Vancostenoble (2003), 1d, arbitrarily short time,
Fu-Yong-Zhang (2007), Carleman estimates, hyperbolic
equations,
Duyckaerts-Zhang-Zuazua (2008), improved Carleman estimates,

allows lim sup
|s|→∞

f (s)

s(log |s|)α
= 0, 0 ≤ α < 3/2.
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Hyperbolic equations with boundary coupling.

The linear controllability problem

Set

g(s) =

{
(f (s)− f (0))/s, if s 6= 0
f ′(0), if s = 0.

Let w ∈ L∞(0,T ; L2(Ω)). Set
a(x , t) = g(w(x , t)), b(x , t) = f ′(w(x , t)). The nonlinear controlled
cascade system may be linearized as:

y0tt − ∂i(bij(x)∂jy0) + a(x , t)y0 = −f (0) + ξ + vχω in Q
qtt − ∂i(bij(x)∂jq) + b(x , t)q = 0 in Q
y0 = 0, q = ∂y0

∂νB
χΓ0 on Σ

y0(0) = y0; y0t (0) = y1; q(0) = q0; qt (0) = q1 in Ω

We shall find a control v so that:

y(T ) = ỹ0; yt (T ) = ỹ1, q(T ) = q̃0; qt (T ) = q̃1 in Ω.

Louis Tebou (FIU, Miami, USA) Controllability...coupled hyperbolic systems BCAM, 2012 27 / 33



Hyperbolic equations with boundary coupling.

To this end, introduce the adjoint system:
ptt − ∂i(bij(x)∂jp) + b(x , t)p = 0 in Q

ztt − ∂i(bij(x)∂jz) + a(x , t)z = 0 in Q
p = 0, z = ∂p

∂νB
χΓ0 on Σ

p(T ) = p0; pt (T ) = p1, z(T ) = z0; zt (T ) = z1 in Ω

For (p0,p1) ∈ H1
0 (Ω)× L2(Ω), we have

p ∈ C([0,T ]; H1
0 (Ω)) ∩ C1([0,T ]; L2(Ω)), and

z ∈ C([0,T ]; L2(Ω)) ∩ C1([0,T ]; H−1(Ω)). For every t ∈ [0,T ], define
the energy

E(p; t) =
1
2

(
|pt (., t)|2L2(Ω) +

∫
Ω

(bij(x)∂jp(x , t)∂ip(x , t) dx
)
.

Thanks to Lions’ H.U.M, the linear controllability problem will be solved
once we prove the following observability estimate:
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Hyperbolic equations with boundary coupling.

Proposition
Let ω be a neighborhood of Γ0, and let T > 2R1. Let ε > 0 with
(N − 2)ε < 4. There exists

Kε = exp
[
Cε(1 + ||a||

2
3−2θε
∞,lε + ||b||

2
3−2θε
∞,lε )

]
such that for all (p0,p1) ∈ H1

0 (Ω)× L2(Ω) and all
(z0, z1) ∈ L2(Ω)× H−1(Ω):

E(p; T ) + Ê(z; T ) ≤ Kε
∫ T

0

∫
ω
|z(x , t)|2 dxdt ,

where Cε = Cε(ε,Ω, ω,T ,bij) > 0, lε = 2 + 4ε−1, θε = εN/(4 + 2ε), and
||.||∞,r = ||.||L∞(0,T ;Lr (Ω)).
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Hyperbolic equations with boundary coupling.

Proof of Proposition: key elements

Step 1. Establish the energy estimate

E(p; t) ≤ E(p; s) exp
(

Cε

(
1 + ||b||

1+θε
2
∞,lε

)
|t − s|

)
, ∀s, t ∈ [0,T ].

Step 2. Use the Duyckaerts-Zhang-Zuazua (boundary) Carleman
estimate and Step 1 to derive the boundary observability estimate

E(p; T ) ≤ eCε(1+||b||
2

3−2θε
∞,lε )

∫ T

0
r2
∫

Γ0

∣∣∣∣∂p(γ, t)
∂νB

∣∣∣∣2 dγdt .

Step 3. Use a localizing argument to derive the partial estimate

E(p; T ) ≤ Kε
∫ T

0

∫
ω
|z(x , t)|2 dxdt .
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Hyperbolic equations with boundary coupling.

Step 4. Use the Duyckaerts-Zhang-Zuazua internal observability
estimate to get

Ê(z; T ) ≤ Kε
∫ T

0

∫
ω
|z(x , t)|2 dxdt + C(Ω,T )

∫ T

0

∫
Γ0

∣∣∣∣∂p(γ, t)
∂νB

∣∣∣∣2 dγdt .

Step 5. Use Lions’inequality∫ T

0

∫
Γ0

∣∣∣∣∂p(γ, t)
∂νB

∣∣∣∣2 dγdt ≤ KεE(p; T ),

in Step 4, and combine the result with Step 3 to get the claimed
estimate. tu
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Some open problems.

1 Do we have E(u; 0) + Ê(v ; 0) ≤ C
∫ T

0

∫
ω |ut (x , t)|2 dxdt , with no

smallness assumption on the couplings?

2 Are the analogues of Theorems 1 to 4 valid for ω ∩ O = ∅,
assuming ω and O both satisfy the Bardos-Lebeau-Rauch
geometric control condition (GCC), and no smallness
assumptions are made on the couplings?

3 What about different principal operators? An improved version of
Theorem 2 is known to hold for the heat equation, but its boundary
counterpart fails in general (wave and heat). A similar result holds
for two wave equations coupled in cascade internally when the
two operators are proportional & Ω is a compact C∞ manifold with
no boundary; in particular it is shown by
Dehman-Leautaud-Lerousseau that if ω ∩ O satisfies GCC, then:

Ê(u; 0) + E−2(v ; 0) ≤ C
∫ T

0

∫
ω
|u(x , t)|2 dxdt ,

where 2E−2(v ; 0) = ||v0||2H−2(Ω)
+ ||v0||2H−3(Ω)

.
4 What about other boundary conditions?
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Final Thought

And if anyone thinks that he knows anything, he
knows nothing yet as he ought to know.

THANKS!
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