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1. Problem formulation and statement of

the main result

Ω = bounded domain in Rd, d ≥ 1,
Γ = boundary of (Ω) class C2, ν =unit nor-
mal pointing into the exterior of Ω.
Γ0 = {x ∈ Γ; (x− x0) · ν ≥ 0}.
T > 0, Q = Ω× (0, T )
ω = nonvoid open subset in Ω.

1



f : R −→ R is a continuously differentiable
function with

f(0) = 0, lim
|s|→∞

f(s)

s
√

log |s|
= 0.

Let ξ ∈ L2(Q), and consider the wave
equation:


ytt −∆y + f(y) = ξ + vχω in Q

y = 0 on Σ = ∂Ω× (0, T )

y(0) = y0 + τ0ŷ
0; yt(0) = y1 + τ1ŷ

1 in Ω
(1)

where (y0, y1) ∈ H1
0 (Ω) × L2(Ω) are given,

(ŷ0, ŷ1) ∈ H1
0 (Ω) × L2(Ω) have unit norm

and are unknown, and τ0 and τ1 are small
unknown real numbers.

We want to find a control v that desen-
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sitizes the functional Φ defined by

Φ(y) =
1

2

∫ T

0

∫
Γ0

|∂y(γ, t)

∂ν
|2 dγdt, (2)

that is to say, we are going to construct a
control v satisfying for all (ŷ0, ŷ1) ∈ H1

0 (Ω)×
L2(Ω) with unit norm:

∂Φ(y)

∂τ0

∣∣∣∣
τ0=τ1=0

= 0 =
∂Φ(y)

∂τ1

∣∣∣∣
τ0=τ1=0

, (3)

History1: controllability of semilinear wave

equation

a) Cirina (1969)
b) Chewning (1976)
Russell (1978),
c) Zuazua (1990-1991), HUM + Schauder

fixed-point (linear growth); Zuazua (1993),
HUM + Leray-Schauder (1d, superlinear
growth allowed)

3



d) Lasiecka-Triggiani (1991), global in-
version theorem (Lipschitz),

e) Li-Zhang (2000), Carleman estimates
f) Komornik-Loreti (2002), iterated log,

improves Zuazua (1993)
g) Li-Rao (2003), quasi-linear hyper-

bolic equations,
h) Martinez-Vancostenoble (2003), 1d,

arbitrarily short time,
i) Fu, Yong& Zhang (2007), Carleman

estimates, hyperbolic equations,
j) Duyckaerts, Zhang & Zuazua (2008),

improved Carleman estimates, allows

lim sup
|s|→∞

f(s)

s(log |s|)α
= 0, 0 ≤ α < 3/2.

History2: control+incomplete data

a) J.L. Lions (1990), parabolic equa-
tions.
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b) Bodart & Fabre (1995), de Teresa
(1997), Bodart & al 2004, Fernandez-Cara
& al (2005), ...

c) Desensitizing control concept ill-known
for second order evolution equations,

d) Dáger (2006), desensitizing controls,
one dimensional wave equation. The proof
technique developed by Dáger critically relies
on the fact that the one dimensional wave
equation is time periodic, which is not the
case in higher dimensions.

e) Tebou (2008), constructs desensitiz-
ing controls for the multidimensional wave
equation using Carleman estimates, and suit-
able localizing techniques.

The functional that the control desen-
sitizes in both Dáger and Tebou papers, as
well as in almost all the papers dealing with
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parabolic equations is

Φ(y) =
1

2

∫ T

0

∫
O
|y(x, t)|2 dxdt,

where O is another open subset of Ω.
Motivation. To examine what happens in
the case of the new functional involving the
normal derivative, and also to explore the
case of a semilinear wave equation.
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Our main result:
Theorem. Let x0 ∈ Rd \ Ω̄. Set Γ0 =
{x ∈ Γ; (x − x0) · ν > 0}. Assume that
ω is a neighborhood of Γ0. There exists a
positive time T ∗0 depending only on Ω and
ω such that for every T > T ∗0 , and for all
y0 ∈ H1

0 (Ω) and y1 ∈ L2(Ω), there exists a
control v ∈ L2(0, T ;L2(ω)) that desensitizes
the functional Φ. Moreover, there exists a
positive constant C independent of the ini-
tial data such that:

||v||L2(0,T ;L2(ω)) ≤ C||ξ||L2(Q)

+ C
(
||y0||H1

0 (Ω) + ||y1||L2(Ω)

)
.

(4)

Remark 1. A precise structure of the con-
stant T ∗0 may be found in Duyckaerts-Zhang-
Zuazua (2008).
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2. Basic ideas for proving Theorem

The main ingredient for proving the ex-
istence of a desensitizing control is to reduce
the problem to a controllability problem. To
this end, consider the following cascade con-
trolled wave equations:

y0tt −∆y0 + f(y0) = ξ + vχω in Q

y0 = 0 on Σ = ∂Ω× (0, T )

y0(0) = y0; y0t(0) = y1 in Ω

(5)


qtt −∆q + f ′(y0)q = in Q

q = y0χΓ0
on Σ = ∂Ω× (0, T )

q(T ) = 0; qt(T ) = 0 in Ω,

(6)

where y0 and y1 are the same as in Theorem.
We have:
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Proposition 1.A control v desensitizes the
functional Φ if and only if the solution pair
(y0, q) of (5)-(6) satisfies:

q(0) = 0, qt(0) = 0. (7)

Remark 2. Proposition 1 reduces the proof
of Theorem to showing that the nonlinear
cascade system (5)-(6) is exactly control-
lable.

Set

g(s) =
f(s)/s, if s 6= 0

f ′(0), if s = 0.

Let w ∈ L∞(0, T ;L2(Ω)). Set

a(x, t) = g(w(x, t)), b(x, t) = f ′(w(x, t)).

System (5)-(6) may be linearized as:
y0tt −∆y0 + ay0 = ξ + vχω in Q

y0 = 0 on Σ = ∂Ω× (0, T )

y0(0) = y0; y0t(0) = y1 in Ω

(8)

9




qtt −∆q + bq = 0 in Q

q =
∂y0

∂ν
χΓ0 on Σ = ∂Ω× (0, T )

q(T ) = 0; qt(T ) = 0 in Ω,

(9)

Introduce the adjoint system to (5)-(6):
ptt −∆p+ bp = 0 in Q

p = 0 on Σ = ∂Ω× (0, T )

p(0) = p0; pt(0) = p1 in Ω

(10)


ztt −∆z + az = 0 in Q

z =
∂p

∂ν
χΓ0

on Σ = ∂Ω× (0, T )

z(T ) = 0; zt(T ) = 0 in Ω.

(11)
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For (p0, p1) ∈ H1
0 (Ω)× L2(Ω), we have:

p ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)),

z ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)).

For every t ∈ [0, T ], set

E(p; t) =
1

2

(
|pt(., t)|2L2(Ω) + ||p(., t)||2H1

0 (Ω)

)
.

Sketch of the proof of Theorem. The
proof of Theorem essentially relies on

Proposition 2. Let O, ω, and T be given as
in Theorem. There exists C1 > 0 such that
for all (p0, p1) ∈ L2(Ω)×H−1(Ω):

E(p; 0) ≤ C1

∫ T

0

∫
ω

|zt(x, t)|2 dxdt. (10)
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Introduce the functional

J : L2(Ω)×H−1(Ω) −→ R
(p0, p1) 7→ J (p0, p1)

J (p0, p1) =
1

2

∫ T

0

∫
ω

|zt(x, t)|2 dxdt

+

∫
Ω

y0(x)zt(x, 0) dx− 〈y1, z(., 0)〉

−
∫
Q

ξ(x, t)z(x, t) dxdt,

(11)

where 〈., .〉 is the duality product between
H−1(Ω) and H1

0 (Ω). The functional J is
strictly convex, and continuous. Further, J
is coercive thanks to Proposition 2. There-
fore, J has a unique minimizer (p0, p1), and
if ẑ is the corresponding solution of (9), then
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we have the Euler equation:∫ T

0

∫
ω

ẑt(x, t)zt(x, t) dxdt

+

∫
Ω

y0(x)zt(x, 0) dx− 〈y1, z(., 0)〉

−
∫
Q

ξ(x, t)z(x, t) dxdt = 0,

(12)

for every z solution of (9). On the other
hand, we have the duality identity:

〈p1, q(., 0)〉 −
∫

Ω

p0(x)qt(x, 0) dx

= 〈y1, z(., 0)〉 −
∫

Ω

y0(x)zt(x, 0) dx

+

∫ T

0

∫
ω

v(x, t)z(x, t) dxdt

+

∫
Q

ξ(x, t)z(x, t) dxdt,

(13)
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Choosing the control
v = ẑtt ∈

[
H1(0, T ;L2(Ω))

]′
in (5), we derive

from (12) and (13), for all(p0, p1) ∈ L2(Ω)×
H−1(Ω):

〈p1, q(., 0)〉 −
∫

Ω

p0(x)qt(x, 0) dx = 0, (14)

hence (7). Therefore v = ẑtt desensitizes the
functional Φ, thanks to Proposition 1. It re-
mains to show that v satisfies (4); this is eas-
ily done by setting z = ẑ in (13), and noticing
that:
||ẑtt||[H1(0,T ;L2(Ω))]′ ≤ ||ẑt||L2(Q). tu
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Sketch of the proof of Proposition 2.
Let ω0 and ω1 be two neighborhoods of Γ+

with ω0 ⊂ ω1 ⊂⊂ O ∩ ω. Let r ∈ C∞0 (0, T )
denote the cut-off function defined in [DZZ,
(2.33)], and set p̃ = rp. Applying Theorem
2.4 of [DZZ] with u = p̃, we derive the exis-
tence of positive constants C, µ, and λ0 ≥ 1
such that for all λ > λ0 :

∫ T ′
0

T0

∫
Ω

|p(x, t)|2 dxdt

≤ Cλe−µλE(p; 0)

+ CeCλ
∫ T

0

r2

∫
ω0

|p(x, t)|2 dxdt,

(15)

where, here and in the sequel, the positive
constant C may bear different values, and
the constants T0 and T ′0 are given by [DZZ,
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(2.29)]. On the other hand one checks that:

E(p; 0) ≤ C
∫ T ′

0

T0

∫
Ω

|p(x, t)|2 dxdt. (16)

The combination of (15) and (16) yields for
λ large enough:

E(p; 0) ≤ C
∫ T

0

r2

∫
ω0

|p(x, t)|2 dxdt. (17)

Introduce the function η, which satisfies: η ∈
C∞(Ω̄),
0 ≤ η ≤ 1, η = 1 in ω0, η = 0, in Ω \
ω1,

|∇η|2
η ∈ C0(Ω̄), |∆η|2

η ∈ C0(Ω̄).
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Set ž = r2ηz. One checks that for all ε > 0:

∫
ω1T

r2η|p|2 dxdt

= −4

∫
ω1T

rr′ηztp dxdt

+

∫
ω1T

{
−2η(rr′′ + |r′|2)zp

}
dxdt

+

∫
ω1T

r2(2∇η · ∇z + z∆η)p dxdt

≤ ε
∫
ω1T

r2η|p|2 dxdt

+ Cε

∫
ω1T

{
|z|2 + |zt|2 + r2|∇z|2

}
dxdt.

(18)
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Choosing ε = 1/2, we draw from (18):∫ T

0

r2

∫
ω0

|p|2 dxdt

≤ C
∫
ω1T

{
|z|2 + |zt|2 + r2|∇z|2

}
dxdt.

(19)
Introduce the function ζ, which satisfies ζ ∈
C∞(Ω̄), 0 ≤ ζ ≤ 1, ζ = 1 in ω1, ζ =
0, in Ω \ (O ∩ ω). Set z̃ = r2ζz. One shows
that:

−
∫
Q

z̃tzt dxdt+

∫
Q

∇z̃ · ∇z dxdt

=

∫
Q

{
4rr′ζztz + 2ζ(rr′′ + |r′|2)z2

}
dxdt

−
∫
Q

r2(2z∇ζ · ∇z + z2∆ζ + ζzpχO) dxdt.

(20)
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It follows from (20), integrating by parts
where needed, that for every δ > 0:∫

ω1T

r2|∇z|2 dxdt

≤ Cδ
∫ T

0

∫
ω

{
|z|2 + |zt|2

}
dxdt

+ 2δTE(p; 0).

(21)

Combining (17), (19), (21), choosing δ =
1/4CT (with C as the product of the con-
stants in (17) and (19)), and using the
Poincaré inequality (as z(T ) = 0), we get
the claimed estimate (10). tu
Open problem. Does there exist a control
that desensitizes the functional:

Ψ(y, yt) =
∫ T

0

∫
O{|y|

2 + |∇Gyt|2} dxdt?
where G is the inverse of −∆ with Dirichlet
boundary condition.
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