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Notations.

Ω = bounded domain in Rd, d ≥ 1,
Γ = boundary of (Ω) class C2, ν =unit nor-
mal pointing into the exterior of Ω.
Γ0=nonvoid open set in Γ.
T > 0, Q = Ω× (0, T ), Σ0 = Γ0 × (0, T ),
O, ω = nonvoid open sets in Ω.
Einstein summation convention used.
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Motivation. Consider the controllability
problem: Given (y0, y1) ∈ H1

0 (Ω) × L2(Ω),
and ξ ∈ L2(Q), find a control
v ∈ L2(0, T ;L2(ω)) such that the solution y
of the hyperbolic system:

ytt − ∂i(bij(x)∂jy) = ξ + v1ω in Q

y = 0 on Σ = ∂Ω× (0, T )

y(0) = y0, yt(0) = y1 in Ω,
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where the coefficients (bij)i,j , satisfy:

bij ∈ C1(Ω̄); bij = bji, ∀i, j = 1, 2, ..., d,

and ∃b0 > 0:

bij(x)zizj ≥ b0zizi, ∀(x, z) ∈ Ω̄× Rd,

then y satisfies:

y(x, T ) = 0, yt(x, T ) = 0 in Ω.
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Solving this controllability problem amounts
to showing that for the adjoint system:

utt − ∂i(bij(x)∂ju) = 0 in Q

u = 0 on Σ = ∂Ω× (0, T )

u(0) = u0 ∈ L2(Ω), ut(0) = u1 ∈ H−1(Ω),

one has the observability estimate:

||u0||2L2(Ω)+||u1||2H−1(Ω) ≤ C

∫ T

0

∫
ω

|u|2 dxdt.
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This controllability problem may be solved
for large enough time T , and control set
ω with the help of the Hilbert uniqueness
method (HUM) of Lions (e.g. Haraux (1988),
Bardos-Lebeau-Rauch, Zuazua in Lions’ Book
on controllability (1988), Fursikov-Imanuvilov
(1996), Yao (1999), Zhang (2000)). In par-
ticular, ω must satisfy the Bardos-Lebeau-
Rauch geometric control condition.
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Such a control v is very sensitive to
small variations of the data of the system;
so we cannot expect a quantity such as∫ T

0

∫
Γ0

|∂y(γ,t)∂νB
|2 dγdt to be insensitive to such

variations. For the latter to happen, a new
concept of controllability is needed. This is
probably what motivated Lions to introduce
the notion of desensitizing control in the late
eighties.
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Desensitizing control problem: Linear case.

Consider the new control problem: Given
(y0, y1) ∈ H1

0 (Ω) × L2(Ω), and ξ ∈ L2(Q),
find a control v ∈ L2(0, T ;L2(ω)) such that
for the solution y of the hyperbolic system:
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ytt − ∂i(bij(x)∂jy) = ξ + v1ω in Q

y = 0 on Σ = ∂Ω× (0, T )

y(0) = y0 + τ0ŷ
0

yt(0) = y1 + τ1ŷ
1 in Ω,

• (ŷ0, ŷ1) ∈ H1
0 (Ω) × L2(Ω) have unit

norm, are arbitrary and unknown,
• τ0 and τ1 are arbitrary small unknown

real numbers,
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the quantity∫ T

0

∫
Γ0

∣∣∣∣∂y(γ, t)∂νB

∣∣∣∣2 dγdt

is insensitive to small perturbations of the
initial data. In other words, can we find a
control v that desensitizes the functional Φ
defined by

Φ(y) =
1

2

∫ T

0

∫
Γ0

∣∣∣∣∂y(γ, t)∂νB

∣∣∣∣2 dγdt?
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This amounts to constructing a control v
such that for all (ŷ0, ŷ1) ∈ H1

0 (Ω) × L2(Ω)
with unit norm:

∂Φ(y)

∂τ0

∣∣∣∣
τ0=τ1=0

= 0 =
∂Φ(y)

∂τ1

∣∣∣∣
τ0=τ1=0

.

10



History: desensitizing control

a) J.L. Lions (1989), parabolic equations.
b) Bodart-Fabre (ε-desensitizing
controls, 1995),
c) de Teresa (1997, 2000),
d) Bodart-Gonzalez Burgos-
Perez Garcia (3 papers, 2004),
e) Fernandez Cara-Garcia-Osses (2005),
f) de Teresa-Zuazua (2009),
g) Kavian-de Teresa (2010)...
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h) Desensitizing control concept in its in-
fancy for second order evolution equations,
i) Dáger (2006), desensitizing controls, one
dimensional wave equation. The proof tech-
nique developed by Dáger critically relies on
the fact that the one dimensional wave equa-
tion is time periodic, which is not the case in
higher dimensions.
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The functional that the control desensi-
tizes in Dáger paper, as well as in almost all
the papers dealing with parabolic equations
is

Ψ(y) =
1

2

∫ T

0

∫
O
|y(x, t)|2 dxdt,

where O is another open subset of Ω.
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Theorem 1. A control v desensitizes the
functional Φ if and only if the solution pair
(y0, q) of the cascade system:

y0tt − ∂i(bij(x)∂jy0) = ξ + vχω in Q

y0 = 0 on Σ = ∂Ω× (0, T )

y0(0) = y0; y0t(0) = y1 in Ω


qtt − ∂i(bij(x)∂jq) = 0 in Q

q =
∂y0
∂νB

χΓ0 on Σ = ∂Ω× (0, T )

q(T ) = 0; qt(T ) = 0 in Ω,

satisfies:

q(0) = 0, qt(0) = 0.

14



Theorem. 2. Suppose that the coefficients
bij are C2, and Ω is C3. Let Γ0 satisfy
the geometric control condition of Bardos-
Lebeau-Rauch. Assume that ω is a neigh-
borhood of Γ0. There exists a positive time
T0 depending only on Ω and Γ0 such that
for every T > T0, and for all y0 ∈ H1

0 (Ω)
and y1 ∈ L2(Ω), there exists a control v ∈
L2(0, T ;L2(ω)) that desensitizes the func-
tional Φ.
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Thanks to Theorem 1 and Lions’ HUM,
proving Theorem 2 amounts to proving the
following observability inequality:

||p0||2H1
0 (Ω) + ||p1||2L2(Ω) ≤ C

∫ T

0

∫
ω

|z|2 dxdt,
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for the adjoint cascade system:


ptt − ∂i(bij(x)∂jp) = 0 in Q

p = 0 on Σ = ∂Ω× (0, T )

p(0) = p0; pt(0) = p1 in Ω


ztt − ∂i(bij(x)∂jz) = 0 in Q

z =
∂p

∂νB
χΓ0 on Σ = ∂Ω× (0, T )

z(T ) = 0; zt(T ) = 0 in Ω.
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To prove the observability inequality:

||p0||2H1
0 (Ω) + ||p1||2L2(Ω) ≤ C

∫ T

0

∫
ω

|z|2 dxdt,

first we show the weighted observability in-
equality [Burq, 1997]:

E(p; 0) ≤ C

∫ T

0

r(t)2
∫
Γ0

|∂p(γ, t)
∂νB

|2 dγdt.

Then, we use a localizing argument.
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ε-desensitizing controls. If the observation
set Γ0 does not satisfy the GCC, then we
cannot expect to build desensitizing controls,
but we can construct ε-desensitizing controls.
A control v is said to ε-desensitize the func-
tional Φ defined by:

Φ(y) =
1

2

∫ T

0

∫
Γ0

∣∣∣∣∂y(γ, t)∂νB

∣∣∣∣2 dγdt
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if for all (ŷ0, ŷ1) ∈ H1
0 (Ω)× L2(Ω) with unit

norm:

∀ε > 0,

∣∣∣∣∣∂Φ(y)∂τ0

∣∣∣∣
τ0=τ1=0

∣∣∣∣∣ ≤ ε,

and ∣∣∣∣∣∂Φ(y)∂τ1

∣∣∣∣
τ0=τ1=0

∣∣∣∣∣ ≤ ε.
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Theorem 3. A control v ε-desensitizes the
functional Φ if and only if the solution pair
(y0, q) of the cascade system:

y0tt − ∂i(bij(x)∂jy0) = ξ + vχω in Q

y0 = 0 on Σ = ∂Ω× (0, T )

y0(0) = y0; y0t(0) = y1 in Ω


qtt − ∂i(bij(x)∂jq) = 0 in Q

q =
∂y0
∂νB

χΓ0 on Σ = ∂Ω× (0, T )

q(T ) = 0; qt(T ) = 0 in Ω,

satisfies:

||q(0)||L2(Ω) ≤ ε, ||qt(0)||H−1(Ω) ≤ ε.
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Theorem. 4. Suppose that the coefficients
bij are C2, and Ω is C3. Let Γ0 be a non-
void open subset of the boundary of Ω. As-
sume that ω is a neighborhood of Γ0. There
exists a positive time T0 depending only on
Ω and Γ0 such that for every T > T0, and
for all y0 ∈ H1

0 (Ω) and y1 ∈ L2(Ω), there
exists a control v ∈ L2(0, T ;L2(ω)) that ε-
desensitizes the functional Φ.
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It may be shown that proving Theorem
4 reduces to proving the following observabil-
ity inequality:

||p0||2L2(Ω) + ||p1||2H−1(Ω)

≤ C

(
ln

(
2 +

E(p; 0)∫ T

0

∫
ω
|z|2 dxdt

))−1

E(p; 0)
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for the adjoint cascade system:


ptt − ∂i(bij(x)∂jp) = 0 in Q

p = 0 on Σ = ∂Ω× (0, T )

p(0) = p0; pt(0) = p1 in Ω


ztt − ∂i(bij(x)∂jz) = 0 in Q

z =
∂p

∂νB
χΓ0 on Σ = ∂Ω× (0, T )

z(T ) = 0; zt(T ) = 0 in Ω.
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To prove the observability inequality:

||p0||2L2(Ω) + ||p1||2H−1(Ω)

≤ C

(
ln

(
2 +

E(p; 0)∫ T

0

∫
ω
|z|2 dxdt

))−1

E(p; 0)
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first we derive the weak observability in-
equality [Robbiano, 1995]:

||p0||2L2(Ω) + ||p1||2H−1(Ω)

≤ C
E(p; 0)

λ

+ Ceµλ
∫ T

0

r(t)2
∫
Γ0

|∂p(γ, t)
∂νB

|2 dγdt.

Then, we use a localizing argument.
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Internal observation. Let O be a nonvoid
open subset of Ω. A control v desensitizes
(resp. ε-desensitizes) the functional Ψ de-
fined by

Ψ(y) =
1

2

∫ T

0

∫
O
|y(x, t)|2 dxdt,

if for all ŷ0 and ŷ1 with unit norm in appro-
priate Hilbert spaces, one has:

∂Ψ(y)

∂τ0

∣∣∣∣
τ0=τ1=0

= 0 =
∂Ψ(y)

∂τ1

∣∣∣∣
τ0=τ1=0

,

respectively:

∀ε > 0,

∣∣∣∣∣∂Ψ(y)

∂τ0

∣∣∣∣
τ0=τ1=0

∣∣∣∣∣ ≤ ε,∣∣∣∣∣∂Ψ(y)

∂τ1

∣∣∣∣
τ0=τ1=0

∣∣∣∣∣ ≤ ε.
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Theorem 5. A control v desensitizes the
functional Ψ if and only if the solution pair
(y0, q) of the cascade system:

y0tt − ∂i(bij(x)∂jy0) = ξ + v1ω in Q

y0 = 0 on Σ = ∂Ω× (0, T )

y0(0) = y0; y0t(0) = y1 in Ω


qtt − ∂i(bij(x)∂jq) = y1O in Q

q = 0 on Σ = ∂Ω× (0, T )

q(T ) = 0; qt(T ) = 0 in Ω,

satisfies:

q(0) = 0, qt(0) = 0.
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Theorem. 6. Suppose that the coefficients
bij are C3, and Ω is also C3. Let ω0 ⊂⊂
O ∩ ω be an open subset satisfying the ge-
ometric control condition of Bardos-Lebeau-
Rauch. There exists a positive time T0 de-
pending only on Ω and ω0 such that for ev-
ery T > T0, and for all y0 ∈ L2(Ω) and
y1 ∈ H−1(Ω), there exists a control v ∈
[H1(0, T ;L2(ω))]′ that desensitizes the func-
tional Ψ.

Thanks to Theorem 5 and Lions’ HUM,
proving Theorem 2 amounts to proving the
following observability inequality:
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||p0||2L2(Ω)+||p1||2H−1(Ω) ≤ C

∫ T

0

∫
ω

|zt|2 dxdt,

for the adjoint cascade system:


ptt − ∂i(bij(x)∂jp) = 0 in Q

p = 0 on Σ = ∂Ω× (0, T )

p(0) = p0; pt(0) = p1 in Ω


ztt − ∂i(bij(x)∂jz) = p1O in Q

z = 0 on Σ = ∂Ω× (0, T )

z(T ) = 0; zt(T ) = 0 in Ω.
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To prove the observability inequality:

||p0||2H1
0 (Ω)+ ||p1||2L2(Ω) ≤ C

∫ T

0

∫
ω

|zt|2 dxdt,

first we show the weighted observability in-
equality:

E(p; 0) ≤ C

∫ T

0

r(t)2
∫
ω0

|p(x, t)|2 dxdt.

Then, we use a localizing argument.
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Theorem 7. Suppose that O and ω are two
nonempty open sets in Ω with O ∩ ω ̸= ∅.
There exists a positive time T ∗ depending
only on Ω, O, and ω such that for every
T > T ∗, for all y0 ∈ H1

0 (Ω) and y1 ∈ L2(Ω),
and for every positive constant ε, there ex-
ists a control v ∈ L2(0, T ;L2(ω)) that ε-
desensitizes the functional Ψ.
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To prove Theorem 7, it is enough to
show the following observability inequality:

||p0||2L2(Ω) + ||p1||2H−1(Ω)

≤ C

(
ln

(
2 +

1∫ T

0

∫
ω
|z|2 dxdt

))−1

E(p; 0)
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To prove the observability inequality,
first we derive the weak observability in-
equality [Bellassoued, 2005]:

||p0||2L2(Ω) + ||p1||2H−1(Ω)

≤ C
E(p; 0)

λ

+ Ceµλ
∫ T

0

r(t)2
∫
ω0

|p(x, t)|2 dxdt.

Then, we use a localizing argument.
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A nonlinear problem. Let f : R −→ R be a
continuously differentiable function with

lim sup
|s|→∞

|f(s)|
|s|(log |s|)α

= 0,

for some 0 ≤ α < 3/2.
Let ξ ∈ L2(Q), and consider the wave

equation:
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ytt −∆y + f(y) = ξ + vχω in Q

y = 0 on Σ = ∂Ω× (0, T )

y(0) = y0 + τ0ŷ
0

yt(0) = y1 + τ1ŷ
1 in Ω

where (y0, y1) ∈ H1
0 (Ω) × L2(Ω) are given,

(ŷ0, ŷ1) ∈ H1
0 (Ω) × L2(Ω) have unit norm

and are unknown, and τ0 and τ1 are small
unknown real numbers.
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We want to find a control v that desen-
sitizes the functional Φ defined by

Φ(y) =
1

2

∫ T

0

∫
Γ0

|∂y(γ, t)
∂ν

|2 dγdt.

This amounts to constructing a control v
that satisfies for all (ŷ0, ŷ1) ∈ H1

0 (Ω)×L2(Ω)
with unit norm:

∂Φ(y)

∂τ0

∣∣∣∣
τ0=τ1=0

= 0 =
∂Φ(y)

∂τ1

∣∣∣∣
τ0=τ1=0

.
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History: controllability of semilinear wave

equation

a) Fattorini (1975), 1d hyperbolic equa-
tions, implicit function method,

b) Chewning (1976) generalizes Fattorini
(1975) to higher dimensions,

c) Zuazua (1990-1991), HUM+ Schauder
fixed-point (linear growth)

d) Zuazua (1993), HUM + Leray-
Schauder (1d, superlinear growth al-

lowed)
e) Lasiecka-Triggiani (1991), global in-

version theorem (Lipschitz),
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f) Cannarsa-Komornik-Loreti (1999), 1d,
iterated log, improves Zuazua (1993)

g) Li-Zhang (2000), Carleman estimates,
superlinear growth allowed,

h) Martinez-Vancostenoble (2003), 1d,
arbitrarily short time,

i) Fu-Yong-Zhang (2007), Carleman es-
timates, hyperbolic equations,

j) Duyckaerts-Zhang-Zuazua (2008), im-
proved Carleman estimates, allows

lim sup
|s|→∞

|f(s)|
|s|(log |s|)α

= 0, 0 ≤ α < 3/2.
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Theorem. 8. Let x0 ∈ Rd \ Ω̄. Set Γ0 =
{x ∈ Γ; (x − x0) · ν > 0}. Assume that
ω is a neighborhood of Γ0. There exists a
positive time T ∗

0 depending only on Ω and
ω such that for every T > T ∗

0 , and for all
y0 ∈ H1

0 (Ω) and y1 ∈ L2(Ω), there exists a
control v ∈ L2(0, T ;L2(ω)) that desensitizes
the functional Φ.
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The main ingredient for proving the ex-
istence of a desensitizing control is to reduce
the problem to a controllability problem. To
this end, consider the following cascade wave
equations:

y0tt −∆y0 + f(y0) = ξ + vχω in Q

y0 = 0 on Σ = ∂Ω× (0, T )

y0(0) = y0; y0t(0) = y1 in Ω


qtt −∆q + f ′(y0)q = in Q

q =
∂y0
∂ν

χΓ0 on Σ = ∂Ω× (0, T )

q(T ) = 0; qt(T ) = 0 in Ω.
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Proposition 9. A control v desensitizes the
functional Ψ if and only if the solution pair
(y0, q) satisfies:

q(0) = 0, qt(0) = 0.
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Set

g(s) =

{
(f(s)− f(0))/s, if s ̸= 0

f ′(0), if s = 0.

Let w ∈ L∞(0, T ;L2(Ω)). Set

a(x, t) = g(w(x, t)), b(x, t) = f ′(w(x, t)).

The nonlinear cascade system may be lin-
earized as:
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y0tt −∆y0 + ay0 = −f(0) + ξ + vχω in Q

y0 = 0 on Σ

y0(0) = y0; y0t(0) = y1 in Ω


qtt −∆q + bq = 0 in Q

q =
∂y0
∂ν

χΓ0 on Σ

q(T ) = 0; qt(T ) = 0 in Ω,

44



Introduce the adjoint system:
ptt −∆p+ bp = 0 in Q

p = 0 on Σ

p(0) = p0; pt(0) = p1 in Ω


ztt −∆z + az = 0 in Q

z =
∂p

∂ν
χΓ0 on Σ

z(T ) = 0; zt(T ) = 0 in Ω.
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Sketch of the proof of Theorem 8.
Thanks to Lions’ HUM, the proof of The-
orem reduces to proving:

Proposition 10. Let ω, and T be given as in
Theorem. Let ε > 0 with (d−2)ε < 4. There
exists

C1 = expC0(1 + ||a||
2

3−2θ

∞,lε
+ ||b||

2
3−2θ

∞,lε
)

such that for all (p0, p1) ∈ H1
0 (Ω)× L2(Ω):

E(p; 0) ≤ C1

∫ T

0

∫
ω

|z(x, t)|2 dxdt,

where lε = 2 + 4ε−1, and θ = εd/(4 + 2ε),
and ||.||∞,r = ||.||L∞(0,T ;Lr(Ω)).
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Thanks to Proposition 10 and Lions’
HUM, the linearized problem is exactly con-
trollable. A Schauder fixed-point argument
shows that the nonlinear system is also ex-
actly controllable; the exact control v de-
sensitizes the functional Ψ by Proposition
9. ⊔⊓
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Sketch of the proof of Proposition 10.
• Apply the [Duyckaerts-Zhang-Zuazua]

Carleman estimate to get: the existence of
positive constants C, µ, and λε = C(1 +

||b||
2

3−2θ

∞,lε
) such that for all λ ≥ λε :∫

Q

r2{λ3|p(x, t)|2 + λ|pt|2 + λ|∇p|2} dxdt

≤ Cλe−µλE(p; 0)

+ CeCλ

∫ T

0

r2
∫
Γ0

|∂p(γ, t)
∂ν

|2 dγdt.

• Show that for all s, t ∈ [0, T ], one has:

E(p; t) ≤ E(p; s) exp(C(1 + ||b||
1+θ
2

∞,lε
)|t− s|).
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• Derive the inverse inequality:

E(p; 0) ≤ [expλε]

∫ T

0

r2
∫
Γ0

|∂p(γ, t)
∂ν

|2 dγdt.

• Use a localizing argument to get:∫ T

0

r2
∫
Γ0

|∂p(γ, t)
∂ν

|2 dγdt

≤ C(1 + ||b− a||2∞,lε)

∫ T

0

∫
ω

|z|2 dxdt.

• Combine both estimates to find:

E(p; 0) ≤ C(1 + ||a||2∞,lε)[expλε]∗∫ T

0

∫
ω

|z|2 dxdt.
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Final remarks and open problems. 1) The
method developed to solve the desensitizing
control problems may be used to construct a
desensitizing control v such that the solution
of the system:

y0tt −∆y0 + f(y0) = ξ + vχω in Q

y0 = 0 on Σ = ∂Ω× (0, T )

y0(0) = y0; y0t(0) = y1 in Ω,

is steered to some prescribed final state.
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2) In the multidimensional set-
ting, can we build ε-desensitizing con-
trols for hyperbolic equations when
O ∩ ω = ∅?

1d case solved (ordinary wave equation),

(Dager, 2006). Parabolic equations, solved

(Kavian-de Teresa, 2010).
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3) For which class of initial data
can controls v ∈ L2(0, T ;L2(ω)) be built
so as to desensitize the functional

Ψ(y) =
1

2

∫ T

0

∫
O
|y(x, t)|2 dxdt,

for hyperbolic equations?

Problem solved for parabolic equations by

de Teresa-Zuazua (2009).
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4) Can boundary desensitizing con-
trols be built in the multidimensional
setting?

boundary ε-desensitizing controls for

parabolic equations found in Bodart-Fabre

(1995) when the control and observation

sets are intersecting boundary portions.

See also Kavian-de Teresa (2010) for more

general results in the same framework.
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5) Constructing desensitizing controls for

plate equations or coupled systems (ther-

moelasticity, maxwell equations,...) re-

mains a widely open problem.
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