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Problem formulation

Consider the wave equation with localized Kelvin-Voigt damping

ytt −∆y − div(a∇yt ) = 0 in Ω× (0,∞)
y = 0 on Σ = Γ× (0,∞), y(0) = y0, yt (0) = y1 in Ω,

where
Ω= bounded domain in RN , N ≥ 1,
Γ= boundary of Ω is smooth.

The damping coefficient is nonnegative, bounded measurable,
and is positive in a nonempty open subset ω of Ω,

the system may be viewed as a model of interaction between an
elastic material (portion of Ω where a ≡ 0), and a viscoelastic
material (portion of Ω where a > 0).
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Problem formulation

Remark

If (y0, y1) ∈ H1
0 (Ω)× L2(Ω), then the system is well-posed in

H1
0 (Ω)× L2(Ω). Introduce the energy

E(t) =
1
2

∫
Ω
{|yt (x , t)|2 + |∇y(x , t)|2}dx , ∀t ≥ 0.

We have the dissipation law:

dE
dt

(t) = −
∫

Ω
a(x)|∇yt (x , t)|2 dx a.e. t > 0.

The energy is a nonincreasing function of the time variable.

Question 1: Does the energy approach zero?

Question 2: When the energy does go to zero, how fast is its decay,
and under what conditions?
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Problem formulation

Introduce the Hilbert space over the field C of complex numbers
H = H1

0 (Ω)× L2(Ω), equipped with the norm

||Z ||2H =

∫
Ω
{|v |2 + |∇u|2}dx , ∀Z = (u, v) ∈ H.

Setting Z =

(
y
y ′

)
, the system may be recast as:

Z ′ −AZ = 0 in (0,∞), Z (0) =

(
y0

y1

)
,

the unbounded operator A : D(A) −→ H is given by

A =

(
0 I
∆ div(a∇.)

)
with D(A) =

{
(u, v) ∈ H1

0 (Ω)× H1
0 (Ω); ∆u + div(a∇v) ∈ L2(Ω)

}
.
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Problem formulation

Now if (y0, y1) ∈ H2(Ω) ∩ H1
0 (Ω)× H1

0 (Ω) then it can be shown that the
unique solution of the system satisfies

y ∈ C([0,∞); H1
0 (Ω)) ∩ C1([0,∞); H1

0 (Ω)).

Note the discrepancy between the regularity of the initial state of the
system and that of all other states as the system evolves with time.

This is what makes the stabilization problem at hand trickier than the
case of a viscous damping ayt , or more generally ag(yt ) for an
appropriate nonlinear function g.
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Well-posedness and strong stability

Theorem 1 [Liu-Rao, 2006]
Suppose that ω is an arbitrary nonempty open set in Ω. Let the
damping coefficient a be nonnegative, bounded measurable, and
positive in ω. The operator A generates a C0-semigroup of
contractions (S(t))t≥0 on H, which is strongly stable:

lim
t→∞
||S(t)Z 0||H = 0, ∀Z 0 ∈ H.
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Polynomial stability

For the sequel we need the geometric constraint (GC) on the subset ω
where the dissipation is effective.

(GC). There exist open sets Ωj ⊂ Ω with piecewise smooth boundary
∂Ωj , and points x j

0 ∈ RN , j = 1, 2, ..., J, such that Ωi ∩ Ωj = ∅, for any
1 ≤ i < j ≤ J, and:

Ω ∩Nδ

 J⋃
j=1

Γj

⋃Ω \
J⋃

j=1

Ωj

 ⊂ ω,
for some δ > 0, where Nδ(S) =

⋃
x∈S

{y ∈ RN ; |x − y | < δ}, for S ⊂ RN ,

Γj =
{

x ∈ ∂Ωj ; (x − x j
0) · ν j(x) > 0

}
, ν j being the unit normal vector

pointing into the exterior of Ωj .
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Polynomial stability

Theorem 2
Suppose that ω satisfies the geometric condition (GC). Let the
damping coefficient a be nonnegative, bounded measurable, with
a(x) ≥ a0 a.e. in ω, for some constant a0 > 0. There exists a positive
constant C such that the semigroup (S(t))t≥0 satisfies:

||S(t)Z 0||H ≤
C||Z 0||D(A)√

1 + t
, ∀Z 0 ∈ D(A), ∀t ≥ 0.

Remark. The polynomial decay estimate in Theorem 2 is in sharp
contrast with what happens in the case of a viscous damping of the
form ayt or ag(yt ) for a nondecreasing globally Lipschitz nonlinearity g;
in fact, when (GC) holds, the geometric control condition of
Bardos-Lebeau-Rauch (every ray of geometric optics intersects ω in a
finite time T0) is met, and exponential decay of the energy should be
expected; this is by now well known:
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Polynomial stability

in the viscous damping framework thanks to works by Chen and
collaborators, Dafermos, Haraux, Lasiecka and collaborators,
Lebeau, Nakao, Rauch-Taylor, Zuazua, ...

in the memory type viscoelastic damping due to works by
Lagnese, Cavalcanti and collaborators, Muñoz-Rivera and
collaborators, Perla-Menzala and collaborators,...

However, it was shown in the one-dimensional setting by Liu-Liu
(1998) that exponential decay of the energy fails if the coefficient a is
discontinuous along the interface; this should be the case in the
multidimensional setting, but more work is needed.
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Polynomial stability

Proof Sketch of Theorem 2. The proof amounts to showing:
iR ⊂ ρ(A), (given by Theorem 1)

∃C > 0 : ||(ib −A)−1||L(H) ≤ Cb2, ∀b ∈ R, |b| ≥ 1,
Apply a theorem of Borichev-Tomilov on polynomial decay of
bounded semigroups.
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Polynomial stability

We shall prove that there exists a constant C > 0 such that for every
U = (f ,g) ∈ H, the element Z = (ib −A)−1U = (u, v) in D(A)
satisfies:

||Z ||H ≤ Cb2||U||H, ∀b ∈ R, |b| ≥ 1 (1)

Note that
ibZ −AZ = U (2)

may be recast as

ibu − v = f in Ω
ibv −∆u − div(a(x)∇v) = g in Ω
u = 0, v = 0 on Γ.

(3)
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Polynomial stability

Introduce the new function u1 = u − w , where w = G(div(a∇v)), with
G =inverse of −∆ with Dirichlet BCs. One notes u1 ∈ H2(Ω) ∩ H1

0 (Ω),
and

||w ||H1
0 (Ω) ≤

√
|a|∞||U||H||Z ||H, ||u1||H1

0 (Ω) ≤ ||Z ||H+
√
|a|∞||U||H||Z ||H.

The second equation in (3) becomes

ibv −∆u1 = g in Ω,

from which one derives

|b|||v ||H−1(Ω) ≤ ||u1||H1
0 (Ω) + C|g|2.
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Polynomial stability

Let J ≥ 1 be a an integer. For each j = 1,2, ..., J, set mj(x) = x − x j
0.

Let 0 < δ0 < δ1 < δ, where δ is the same as in the geometric condition
stated above. Set

S =

 J⋃
j=1

Γj

⋃Ω \
J⋃

j=1

Ωj

 ,

Q0 = Nδ0(S), Q1 = Nδ1(S), ω1 = Ω ∩Q1,

and for each j , let ϕj be a function satisfying

ϕj ∈W 1,∞(Ω), 0 ≤ ϕj ≤ 1, ϕj = 1 in Ω̄j \Q1, ϕj = 0 in Ω ∩Q0.
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Polynomial stability

The usual multiplier technique leads to the estimate

||Z ||2H ≤ C||U||2H + C|b|

∣∣∣∣∣∣
J∑

j=1

∫
Ωj

vϕjmj · ∇w̄ dx

∣∣∣∣∣∣ . (4)

Thanks to the estimate on w , one derives

C|b|

∣∣∣∣∣∣
J∑

j=1

∫
Ωj

vϕjmj · ∇w̄ dx

∣∣∣∣∣∣ ≤ C|b|||U||
1
2
H||Z ||

3
2
H,

which combined with (4) yields the sought after estimate:

||Z ||H ≤ Cb2||U||H.
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Exponential stability

Theorem 3
Suppose that ω satisfies the geometric condition (GC). As for the
damping coefficient a, assume

a ∈W 1,∞(Ω) with |∇a(x)|2 ≤ M0a(x), a.e. in Ω,
a(x) ≥ a0 > 0 a.e. in ω1,

for some positive constants M0 and a0.
The semigroup (S(t))t≥0 is exponentially stable; more precisely, there
exist positive constants M and λ with

||S(t)Z 0||H ≤ M exp(−λt)||Z 0||H, ∀Z 0 ∈ H.

Remark. In Liu-Rao (2006), the feedback control region ω is a
neighborhood of the whole boundary, and the damping coefficient a
should further satisfy ∆a ∈ L∞(Ω).
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neighborhood of the whole boundary, and the damping coefficient a
should further satisfy ∆a ∈ L∞(Ω).
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Exponential stability

Proof Sketch of Theorem 3. The proof amounts to showing:
iR ⊂ ρ(A), (given by Theorem 1)

∃C > 0 : ||(ib −A)−1||L(H) ≤ C, ∀b ∈ R
Apply a theorem due to Prüss or Huang on exponential decay of
bounded semigroups.
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Exponential stability

We shall prove that there exists a constant C > 0 such that for every
U = (f ,g) ∈ H, the element Z = (ib −A)−1U = (u, v) in D(A)
satisfies:

||Z ||H ≤ C||U||H, ∀b ∈ R. (5)

Thanks to the proof sketch of Theorem 2, we already have:

||Z ||2H ≤ C||U||2H + C|b|

∣∣∣∣∣∣
J∑

j=1

∫
Ωj

vϕjmj · ∇w̄ dx

∣∣∣∣∣∣ . (6)

With the smoothness and structural conditions on the coefficient a, it
can be shown that, on the one hand

C|b|

∣∣∣∣∣∣
J∑

j=1

∫
Ωj

vϕjmj · ∇w̄ dx

∣∣∣∣∣∣ ≤ C|b||
√

av |2(||U||
1
2
H||Z ||

1
2
H + ||Z ||H), (7)
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Exponential stability

and on the other hand

b2|
√

av |22 ≤ C(||U||
1
2
H||Z ||

3
2
H + ||U||H||Z ||H + ||U||

3
2
H||Z ||

1
2
H). (8)

Remark. The same method may be applied to the following system:

ytt −∆y − a∆yt = 0 in Ω× (0,∞)
y = 0 on Σ = Γ× (0,∞), y(0) = y0, yt (0) = y1 in Ω.

But now, the natural the energy space is Ĥ = H2(Ω) ∩ H1
0 (Ω)× H1

0 (Ω).
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Extensions and open problems.

1 A potential of the form p(x)y may be added to the wave equation.
The potential p being nonnegative and satisfying some structural
conditions.

2 What are the optimal conditions on the damping coefficient a for
exponential stability to hold?

3 When the damping coefficient is only bounded measurable, the
analysis of the non-exponential decay of the energy in the
multidimensional setting is an interesting open problem.

4 The case of a nonlinear damping is open.
5 Extending the polynomial and exponential stability results to the

optimal geometric condition of Bardos-Lebeau-Rauch is an open
problem.

6 The analogous problem for the plate equation
ytt + ∆2y + ∆(a∆yt ) = 0 in Ω× (0,∞) with clamped BCs is open
in the multidimensional setting. No smoothness on the damping
coefficient is needed in the one-dimensional setting, (Liu-Liu,
1998).
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Final Thought

And if anyone thinks that he knows anything, he
knows nothing yet as he ought to know.

THANKS!
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