MAC 2311 (Calculus I)
TEST 1, Friday October 02, 2009

Name:

PID:
Remember that no documents or calculators are allowed during the exam. Be as precise as possible in your work; you shall show all your work to deserve the full mark assigned to any question. Do not cheat, otherwise I will be forced to give you a zero and report your act of cheating to the University Administration. Good Luck.

1. [40] Evaluate the following limits (Show all your work)
a) $\lim _{x \rightarrow 1} \frac{x^{2}-3 x}{x^{3}-2 x+6}=$
b) $\lim _{x \rightarrow+\infty} \cos \left(\frac{-\pi x^{4}+3 x+7}{8-5 x^{2}+2 x^{4}}\right)=$
c) $\lim _{x \rightarrow-2^{-}} \frac{x}{x+2}=$
d) $\lim _{x \rightarrow 2} \frac{\sqrt{3 x-2}-2}{x-2}=$
e) $\lim _{x \rightarrow-3} \sqrt{\frac{3 x^{2}-5 x+3}{-5 x-3}}=$
f) $\lim _{x \rightarrow \frac{\pi}{4}-} \frac{\sin (2 x)}{|x|}=$
g) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x^{2}-5 x+6}=$
h) $\lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{2}-5 x+6}}{-5 x+7}=$
2. [7] If $f(x)=\left\{\begin{array}{l}2 x^{2}-3, \quad x>1 \\ x^{3}-2, \quad x \leq 1 .\end{array}\right.$

Is f continuous at $x=1$? You must carefully explain your answer to get any credits.
3. [10] Write down the rigorous definition of $\lim _{x \rightarrow a} f(x)=L$, and use it to prove that $\lim _{x \rightarrow-3}(5 x+6)=-9$.
4. [6] a) Use the implicit differentiation technique to find $\frac{d y}{d x}$ if $x^{2} y^{3}-4 x+12 y=8$.
b) Find the equation of the tangent line to the curve $x^{2} y^{3}-4 x+12 y=8$ at the point $(2,1)$.
5. [37] Find the derivative of each of the following functions (Show all your work, and simplify your answers as much as possible; you will not get any credit by guessing the correct answer(s).)
a) $f(x)=2 x^{3}-\frac{5}{\sqrt[3]{x}}+\frac{7}{x^{2}}$
b) $g(x)=\frac{3 x-4}{x^{2}+x+1}$
c) $h(x)=x^{2} \ln (x)$
d) $k(x)=\sin ^{2}\left(\sec ^{3} x\right)+\cos ^{2}\left(\sec ^{3} x\right)$
$\begin{array}{ll}\text { e) } l(x)=\tan \left(x^{3}-\csc x\right) & \text { f) } m(x)=\sin (\cos x)\end{array}$
g) Use the logarithmic differentiation technique to find the derivative of $p(x)=\frac{x^{2} \sqrt[5]{x^{2}-x+2}}{x^{3}+x-1}$.

Bonus. [6] $\lim _{x \rightarrow-\infty}\left(\sqrt{4 x^{2}-5 x}+2 x\right)=$

