MAC 2311 (Calculus I) Test 1, Monday October 17, 2011

Name:

PID:
Remember that no documents or calculators are allowed during the exam. Be as precise as possible in your work; you shall show all your work to deserve the full mark assigned to any question. Do not cheat, otherwise I will be forced to give you a zero and report your act of cheating to the University administration. Good Luck!

1. [30] Evaluate the following limits (Show all your work. You cannot use de l'Hopital's rule for any of the limits a) to
$\mathrm{f})$, otherwise you'll get a zero. You will not get any credit(s) by guessing the correct answer(s).)
a) $\lim _{x \rightarrow-1} \frac{x^{4}-3 x+2}{2 x^{3}+5 x-8}=$
b) $\lim _{x \rightarrow-\infty} \frac{5 x^{5}-7 x^{3}+10 x+10^{12}}{2 x-x^{6}+5}=$
c) $\lim _{x \rightarrow 2 \pi} \frac{\sin x}{x}=$
d) $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x^{2}-1}=$
e) $\lim _{x \rightarrow-5^{-}} \frac{x+3}{x+5}=$
f) $\lim _{x \rightarrow 0} \frac{\sin ^{2}(4 x)}{x^{2}}=$
2. [10] Use de l'Hopital's rule to find the following limits.
i) $\lim _{x \rightarrow 0} \frac{\sin x}{e^{x}-1}=$
ii) $\lim _{x \rightarrow+\infty} \frac{e^{x}}{x}=$
3. [10] a) Write down the two definitions for $f^{\prime}\left(x_{0}\right)$. b) Use any of those definitions to find $f^{\prime}(2)$ if $f(x)=\frac{1}{x}$. c) Use b) to find the equation of the tangent line to the curve $y=1 / x$ at $x=2$.
4. [10] a) Write down the rigorous definition of $\lim _{x \rightarrow-3} f(x)$. b) Use that definition to show that $\lim _{x \rightarrow-3}(-4 x+1)=13$.
5. [32] Find the derivative of each of the following functions (Show all your work, and simplify your answers as much as possible; you will not get any credit(s) by guessing the correct answer(s).)
a) $f(x)=\frac{x^{2}-3 x+1}{x^{2}+x-2}$
b) $g(x)=x \cos \left(x^{2}\right)$
c) $h(x)=\cos ^{-1}(3 x)$
d) $k(x)=e^{\tan x}$
e) Use the logarithmic differentiation technique to find $\frac{d y}{d x}$ if $y=(\sin x)^{x^{3}}$.
f) Use the implicit differentiation technique to find $\frac{d y}{d x}$ if $x^{3}-\cos (y)=y$
6. [14] Decide whether the statement is true or false. No explanation needed.
a) If $\lim _{x \rightarrow-2} \frac{f(x)-f(-2)}{x+2}=17$, then $\lim _{h \rightarrow 0} \frac{f(-2+h)-f(-2)}{h}=17$.
b) If f is differentiable at a, then f is continuous at a.
c) If f is continuous at x_{0}, then $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.
d) If $f(-3)=5$, then $\lim _{x \rightarrow-3} f(x)=5$.
e) If $\lim _{x \rightarrow x_{0}^{+}} f(x)=26$ and $\lim _{x \rightarrow x_{0}^{-}} f(x)=26$, then f is continuous at x_{0}.
f) If $|f|$ is continuous at -1 , then f is continuous at -1 .
g) $\lim _{x \rightarrow+\infty}\left(x-x^{2}\right)=+\infty-(+\infty)=0$.
