MAC 2312 (Calculus II)
Test 1, Wednesday February 22, 2012
Name:
PID:
Remember that no documents or calculators are allowed during the test. Be as precise as possible in your work; no credits will be awarded for unexplained answers. Do not cheat, otherwise I will be forced to give you a zero and report your act of cheating to the University Administration. Good luck.

1. [6] Determine whether the improper integral converges or diverges. If it converges, state its limit, and if it diverges, state whether it diverges to $+\infty$, to $-\infty$, or due to oscillations.
$\int_{1}^{+\infty} \frac{d x}{x^{-\frac{22}{3}}} d x=$
2. [6] A particle moving along a straight line is accelerating at a constant rate of $4 \mathrm{~m} / \mathrm{s}^{2}$. Find the initial velocity if the particle moves 36 m in the first 3 s .
3. [8] a) Use the difference $a_{n+1}-a_{n}$ to show that the sequence $\left(a_{n}\right)_{n}$ given by: $a_{n}=\frac{3 n}{4 n+5}, \quad n=1,2, \ldots$, is strictly increasing. b) Derive from a) that the sequence $\left(a_{n}\right)_{n}$ converges. c) Find its limit.
4. [10] Decide whether each statement is true or false. No explanation is needed.
a) If f is integrable on $[a, b]$, then f is continuous on $[a, b]$.
b) If $\left(a_{n}\right)$ is a decreasing sequence, then $\left(a_{n}\right)$ converges.
c) If f is integrable on $[a, b]$, then $\int_{a}^{b} f(x) d x+\int_{b}^{a} f(x) d x=0$
d) $\int_{-2}^{2} \frac{d x}{x^{3}}=0$.
e) If $\left(a_{n}\right)$ is a bounded sequence, then $\left(a_{n}\right)$ converges.
5. [8] Approximate the integral $\int_{0}^{2} \cos \left(x^{3}\right) d x$ using: a) the midpoint rule with $n=2$. b) Simpson's rule with $n=2$.
6. [15] Evaluate each definite integral.
a) $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\left(t-\frac{3}{\sin ^{2} t}\right) d t=$
b) $\int_{1}^{4} \frac{|3-x|}{x} d x=$
c) $\int_{1-\pi}^{1+\pi} \sec ^{2}\left(\frac{1}{3}-\frac{u}{3}\right) d u=$
7. [10] a) Write the expression in sigma notation, but do not evaluate.
$1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}=$
b) Use the values $a=1$ and $b=2$ to express the limit as an integral. Do not evaluate the integral.

$$
\lim _{\max \Delta x_{k} \rightarrow 0} \sum_{k=1}^{n} \ln \left(1+e^{x_{k}^{*}}\right) \Delta x_{k}=
$$

8. [25] Evaluate each indefinite integral.
i) $\int \sin x \cos (2 x) d x=$
j) $\int e^{\tan v} \sec ^{2} v d v=$
k) $\int \frac{\ln t}{t^{3}} d t=$
1) $\int \frac{2 x^{2}-1}{x\left(x^{2}+1\right)} d x=$
9. [10] a) Find the derivative $F^{\prime}(x)$ if $F(x)=\int_{x^{2}}^{\cos x} \sin \left(\pi t+t^{3}\right) d t$.
b) Use the definition of the definite integral to write the given integral as the limit of a Riemann sum. Do not evaluate the integral.
$\int_{0}^{\frac{\pi}{4}} \sin (\cos x) d x=$
10. [5] State the fundamental theorem of calculus, part 1.
