MAC 2313 (Calculus III) U03
Test 1, Thursday January 31, 2008

Name:

Remember that no documents or graphing calculators are allowed during the test. Be as precise as possible in your work; you shall show all your work to deserve the full mark assigned to any question. Do not cheat, otherwise I will be forced to give you a zero and report your act of cheating to the University Administration. Good luck.

1. [9] Discuss each limit.
a) $\lim _{(x, y, z) \rightarrow(1,2,-1)} \frac{5 x y-3 z}{1+2 x^{2}+y^{2}-z^{2}}$
b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{9 x^{2}+4 y^{2}}$
2. [15] Let $f(x, y)=\left\{\begin{array}{l}\frac{x^{\frac{9}{5}} y}{\left(x^{2}+y^{2}\right)^{\frac{3}{4}}}, \quad(x, y) \neq(0,0), \\ 0, \quad(x, y)=(0,0) .\end{array}\right.$
a) Is f continuous at $(0,0)$? b) Find $f_{x}(0,0)$, and $f_{y}(0,0)$. c) Is f differentiable at $(0,0)$?
3. $[10+4+6]$ a) Show that if f is differentiable at $\left(x_{0}, y_{0}\right)$, then f is continuous at $\left(x_{0}, y_{0}\right)$. b) Convert the point $(1, \sqrt{3},-2)$ from rectangular to spherical coordinates. c) Convert the equation of the surface $\rho=2 \csc \phi$, from spherical to rectangular coordinates, and identify the surface.
4. $[9+6]$ a) If $\tan (w)+z e^{(y x)}=w$, use implicit differentiation to find w_{x}, w_{y}, and w_{z}. b) If $f(x, y, z)=x y+y z+z x$, find a local linear approximation L of the function f at $P(1,-1,1)$, and use it to approximate $f(0.99,-1.01,1.001)$.
5. [8] If $x=u v, y=u^{2}-v^{2}$, and $z=\cos (x / y)$, use the chain rule to find z_{u}, z_{v}. Express your answers in terms of u and v only.
6. [16] Consider the surface $z-2 y^{2}-x^{2}=1$. a) What equation results when the surface is reflected about $x=z$? b) Describe in words the level surfaces: $x^{2}+4 y^{2}-z^{2}=k$, for $k=-1,0,1$. c) Write down the equation of the sphere having the points $P(1,-1,1)$ and $Q(1,3,1)$ as a diameter.
7. [20] Let $f(x, y)=y^{3}-6 x^{2}+2 y^{2}+x^{4}$. Find all the critical points of f and classify each of them as a local maximum, a local minimum, or a saddle point.
