MAP 2302 (Differential Equations)

TEST 1, Thursday February 11, 2010
Name:
PID:
Remember that no documents or calculators are allowed during the test. You shall show all your work to deserve the full mark assigned to any question. 5 pages. Total=100 points

1. $[11+10]$ a) Show that the function given by $f(x)=2 e^{-2 x}+\sin x-\cos x$ is the solution of the initial-value problem: $y^{\prime \prime}+4 y^{\prime}+5 y=2 e^{-2 x}+8 \sin x, \quad y(0)=1, \quad y^{\prime}(0)=-3$. b) Show that the differential equation: $\left(x^{2} y+2 y-3\right) d x+x d y=0$ is not exact. b1) Find an integrating factor for that equation. b2) Write down the exact differential equation, but do not solve it.
2. [10] State Theorem 1.1 from the text. Use that theorem to show that the initial-value problem:

$$
\left\{\begin{array}{l}
\frac{d y}{d x}=2^{x y}-y^{3} x^{2} \\
y(4)=\pi
\end{array}\right.
$$

has a unique solution defined on some sufficiently small interval $|x-4| \leq h$ about $x_{0}=4$.
3. [12] Solve the initial-value problem: $\left(x^{2}+1\right) \frac{d y}{d x}+2 x y=x^{3}, \quad y(0)=2$.
4. [15] Given that $y=x^{2}$ solves the differential equation: $x^{2} y^{\prime \prime}-6 x y^{\prime}+10 y=0$, use the method of reduction of order to find a linearly independent solution. Write down the general solution.
5. $[12+10]$ a) Solve the homogeneous differential equation: $\left(x^{2}+3 y^{2}\right) d x-2 x y d y=0$.
b) Reduce the equation $(x+3 y-7) d x+(4 x+12 y+8) d y=0$ to a separable equation. Do not solve the separable equation obtained.
6. [10] Find the orthogonal trajectories to the family of curves $x^{2}-4 y^{2}=c$.
7. [10] Find the constant A such that the differential equation: $\left(3 x^{2} y^{2}+A y\right) d x+\left(2 x^{3} y+4 x-\sin y\right) d y=0$ is exact. Solve the exact differential equation.

