MAS 3105 (Linear Algebra)
Test 1, Friday May 27, 2016
Name:
PID:

Remember that you won't get any credit if you do not show the steps to your answers. You may show your work on the back of each page. Total=105 points.

1. [20] Solve the linear system

$$
\begin{array}{ll}
x_{2}+x_{3}+x_{4} & =0 \\
3 x_{1}+3 x_{2}-4 x_{3} & =9 \\
x_{1}+x_{2}+2 x_{3}+x_{4} & =6 \\
2 x_{1}+3 x_{2}+x_{3}+3 x_{4} & =6
\end{array}
$$

2. [20] State whether each of the following statement is true or false. No explanations needed.
(1) If A is an $n \times n$ matrix with $A^{2}=0_{\mathcal{M}_{n}}$, then A is singular.
(2) If A a 20×20 matrix that is row equivalent to a nonsingular matrix B, then $\operatorname{det}(A) \neq 0$.
(3) If A is an 11×15 matrix, then $A^{T} A$ is a 15×15 matrix.
(4) If U is a nonempty subset of a vector space E, then U is a subspace of E.
(5) If A, and B satisfy $\operatorname{det}(A)=\operatorname{det}(B)$, then $\operatorname{det}(A B) \geq 0$.
(6) If $A^{2}-3 A+I_{n}=0_{\mathcal{M}_{n}}$, then A is nonsingular.
(7) If an $m \times m$ matrix A satisfies $A^{T}=A$, then A is nonsingular.
(8) If A and B are $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(B A)$.
(9) If A and B are nonsingular $n \times n$ matrices, then $A+B$ is also nonsingular.
(10) If A and B are 15×15 matrices with $A=B^{T}$, then $\operatorname{det}(A)=\operatorname{det}(B)$.
3. [15] Consider the linear system whose augmented matrix is $\left[\begin{array}{ccc|c}1 & 2 & 1 & 0 \\ 2 & m & 3 & 0 \\ -1 & 1 & 5 & 0\end{array}\right]$
a) Is it possible for this system to be inconsistent? Explain, or no credit.
b) For which value(s) on m will the system have infinitely many solutions? Write down the solution set(s) in this case.
4. [10] For which values of the number a do we have $A_{a}^{2}=I_{2}$ if $A_{a}=\left[\begin{array}{cc}a-1 & 1 \\ -2 & 1-a\end{array}\right]$, and I_{2} denotes the identity matrix of order 2 ?
5. [20] Find the inverse of the matrix (Hint. You may use the reduction method.)
$A=\left(\begin{array}{lll}1 & 1 & 1 \\ 2 & 3 & 5 \\ 1 & 3 & 5\end{array}\right)$.
6. [10] a) Let A be an $n \times n$ matrix. Set $B=A+A^{T}$ and $D=A^{T}-A$. Show that B is symmetric and D is skew symmetric.
b) Let A denote the matrix in problem 5 . Find an upper triangular matrix U and a lower triangular matrix L such that $A=L U$.
7. [10] a) Let V be a vector space, and let S be a subset of V. Complete the sentence: S is called a subspace of V when
b) Let A and B be $m \times m$ matrices with $A B=A+B$. Show that, if B is nonsingular, then A is nonsingular.
