MAC 2311 (Calculus I)

TEST 1 Review

Name:

PID:

Remember that no documents or calculators are allowed during the exam. Be as precise as possible in your work; you shall show all your work to deserve the full mark assigned to any question. Do not cheat, otherwise I will be forced to give you a zero and report your act of cheating to the University Administration. Good Luck.

1. [30] Evaluate the following limits (Show all your work. You will not get any credit(s) by guessing the correct answer(s). If a limit is infinite, clearly state whether it is $+\infty$ or $-\infty$.)
a) $\lim _{x \rightarrow-1} \frac{x^{2}-3 x}{x^{3}-2 x+6}=$
b) $\lim _{x \rightarrow+\infty} \frac{-5 x^{5}+3 x+7}{8-5 x^{2}+2 x^{4}}=$
c) $\lim _{x \rightarrow-3^{-}} \frac{1-x}{x+3}=$
d) $\lim _{x \rightarrow-2} \frac{\sqrt{-2-3 x}-2}{x+2}=$
e) $\lim _{x \rightarrow 3} \sqrt{\frac{3 x^{2}-5 x+4}{5 x-7}}=$
f) $\lim _{x \rightarrow \frac{3}{2}^{+}} \frac{1}{|-2 x+3|}=$
g) $\lim _{x \rightarrow 1} \frac{x^{12}-1}{x^{3}-1}=$
h) $\lim _{x \rightarrow+\infty} \frac{\sqrt{6 x^{2}-5 x+6}}{-5 x+7}=$
i) $\lim _{x \rightarrow 1}\left(x^{3}-7 x+2\right)=$
j) $\lim _{x \rightarrow-\infty}\left(\sqrt{9 x^{2}-5 x}+3 x\right)=$
2. [5] If $f(x)= \begin{cases}x^{3}+3, & x \geq-2 \\ 3 x+1, & x<-2 .\end{cases}$

Is f continuous at $x=-2$? You must carefully explain your answer to get any credits.
3. [5] Use the rigorous definition of limit to prove that $\lim _{x \rightarrow 5}(-3 x+10)=-5$.
4. [5] Express $f(x)=|-5 x+9|-|3 x+8|$ in a piecewise defined form without using the absolute value symbol.
5. [5] a) State the intermediate value theorem. b) Use it to show that the equation $2 x^{712}-7 x^{7}+1=0$ has a solution in the open interval $(0,1)$.
6. [30] Evaluate the following limits (Show all your work. You cannot use de l'Hopital's rule for any of the limits a) to f), otherwise you'll get a zero. You will not get any credit(s) by guessing the correct answer(s). If a limit is infinite, clearly state whether it is $+\infty$ or $-\infty$.)
a) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{x^{2}+x}\right)=$
b) $\lim _{x \rightarrow-\infty} \frac{5 x^{5}-7 x^{3}+10 x+10^{12}}{2 x-x^{4}+5}=$
c) $\lim _{x \rightarrow 2 \pi} \frac{\sin x}{x}=$
d) $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x^{2}-1}=$
e) $\lim _{x \rightarrow-5^{-}} \frac{x+3}{x+5}=$
f) $\lim _{x \rightarrow 0} \frac{\sin ^{2}(4 x)}{x^{2}}=$
g) $\lim _{x \rightarrow 2} \frac{\cos \left(\frac{\pi}{x}\right)}{x-2}=$
h) $\lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos x-\sin x}{x-\frac{\pi}{4}}=$
i) $\lim _{x \rightarrow 1} \frac{\sin (\pi x)}{x-1}=$
j) $\lim _{x \rightarrow+\infty} x^{2}(1-\cos (1 / x))=$
7. [5] a) Write down the rigorous definition of $\lim _{x \rightarrow-3} f(x)=L$. b) Use that definition to show that $\lim _{x \rightarrow-3}(-4 x+1)=13$.
8. [5] Decide whether the statement is true or false. No explanation needed.
a) If f is continuous at x_{0}, then $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.
b) If $f(-3)=5$, then $\lim _{x \rightarrow-3} f(x)=5$.
c) If $\lim _{x \rightarrow x_{0}^{+}} f(x)=26$ and $\lim _{x \rightarrow x_{0}^{-}} f(x)=26$, then f is continuous at x_{0}.
d) If $|f|$ is continuous at -1 , then f is continuous at -1 .
e) $\lim _{x \rightarrow+\infty}\left(x-x^{2}\right)=+\infty-(+\infty)=0$.
9. [5] Sketch a possible graph for a function f satisfying the following properties:
i) $f(-3)=f(0)=f(2)=0$
(ii) $\lim _{x \rightarrow-2^{+}} f(x)=-\infty$ and $\lim _{x \rightarrow-2^{-}} f(x)=+\infty$
(iii) $\lim _{x \rightarrow 1} f(x)=+\infty$.
10. [5] Find all values of x at which the given function is continuous: a) $f(x)=\sin ^{-1}(\ln (2 x))$, b) $g(x)=\log _{3 x+4}(-5 x+12)$, c) $h(x)=\ln (-2 x+7)-\ln (4 x+5)$, d) $k(x)=\log _{x}\left(\frac{3-2 x}{5 x+8}\right)$.

