MAC 2313 (Calculus III)

Test 1 Review. Test 1 will cover sections 1 to 6 in chapter 11.

1. Describe the given surface; if it is a sphere, state its radius and center. If it is a point,
state its coordinates. a) $\left.x^{2}+y^{2}+z^{2}+6 x-2 y-6=0 . \mathrm{b}\right) x^{2}+y^{2}+z^{2}-2 m x-6 y-8 z+50=0$, where m is a parameter, (discuss according to the values of m).
2. a) Find an equation for the sphere passing through the origin and centered at the point $C(1,-2,5)$. b) Decide whether the points $A(2,3,1), B(-1,1,-2)$ and $C(1,-1,1)$ are the vertices of an equilateral triangle.
3. Let $\vec{r}=2 \vec{i}-3 \vec{j}+4 \vec{k}, \vec{z}=3 \vec{j}-5 \vec{k}$, and $\vec{v}=-2 \vec{i}+\vec{j}-4 \vec{k}$. a) Find the area of the parallelogram having \vec{r} and \vec{z} as adjacent sides. b) Find the volume of the parallelepiped having \vec{r}, \vec{z} and \vec{v} as adjacent edges. c) Find the acute angle θ between \vec{v} and the plane containing the face determined by \vec{r} and \vec{z}.
4. Consider the lines: $L_{1}: x=4-2 t, \quad y=2+3 t, \quad z=1+t$ and $L_{2}: x=2+4 t, y=3-6 t, z=-2 t$. a) Show that L_{1} and L_{2} are parallel lines. b) Find the distance between L_{1} and L_{2}.
5. a) Let $A\left(x_{0}, y_{0}, z_{0}\right)$ be a given point in 3 -space. Let \mathcal{P} be the plane with equation $a x+b y+c z+d=0$. Write down the distance D between A and the plane \mathcal{P}.
$D=$
b) Use a) to find the distance between the two skew lines: $L_{1}: x=-2+t, y=3+2 t, \quad z=1+8 t$ and $L_{2}: x=1-2 t, \quad y=-2+3 t, \quad z=-1+5 t$.
6. Let $\vec{w}=\vec{i}-2 \vec{j}+3 \vec{k}$ and $\vec{v}=2 \vec{i}-\vec{j}-5 \vec{k}$. a) Find the vector component of \vec{v} that is parallel to \vec{w} and the vector component of \vec{v} that is orthogonal to \vec{w}. b) If θ denotes the angle between \vec{v} and \vec{w}, find $\cos (\theta)$ and $\sin (\theta)$. Is θ acute or obtuse? c) Find the direction angles of \vec{w}.
7. a) Set $\vec{u}=\vec{i}-3 \vec{k}, \vec{v}=-\vec{j}+\vec{k}$ and $\vec{w}=2 \vec{i}-\vec{j}$. Let $\vec{z}=\vec{i}-\vec{j}+2 \vec{k}$. Find scalars a, b, and c such that $\vec{z}=$ $a \vec{u}+b \vec{v}+c \vec{w}$. b) If we now set: $\vec{u}=\vec{i}+\vec{j}-2 \vec{k}, \vec{v}=\vec{i}+\vec{j}+\vec{k}$ and $\vec{w}=\vec{i}-\vec{j}$, find scalars α, β and γ such that $\vec{z}=\alpha \vec{u}+\beta \vec{v}+\gamma \vec{w}$.
8. a) Find parametric equations for the line through the points $A(-1,2,3)$ and $B(2,-3,4)$. b) Find the vector \vec{w} of norm 4 that is oppositely directed to $\vec{z}=2 \vec{i}-\vec{j}+3 \vec{k}$. c) Find parametric equations for the line through the point $A(5,0,-2)$ that is parallel to the planes $x-4 y+2 z=2$ and $2 x+3 y-z+1=0$. d) Find an equation for the plane through the points $A(-2,1,4), B(1,0,3)$ that is perpendicular to the plane $4 x-y+3 z=-1$. c) Let L be the line defined by the parametric equations $x=1-2 t, y=2+3 t, z=3+t$. Let \mathcal{P} be the plane defined by $2 x+y-z=4$.c1) Show that L and \mathcal{P} are not perpendicular to each other. c2) Find an equation for the plane \mathcal{Q} that both contains L and is perpendicular to \mathcal{P}.
9. a) Show that the two lines $L_{1}: x=1-t, \quad y=2+t, \quad z=1+5 t$, and $L_{2}: x=2+t, \quad y=2+3 t, \quad z=-1+7 t$ intersect, and find their point of intersection A. b) Find the acute angle θ between L_{1} and L_{2} at A. c) Find an equation for the plane that contains both L_{1} and L_{2}. d) Find an equation for the plane that contains both L_{1} and the point $B(1,-2,-1)$.
10. a) If a bug walks on the sphere $x^{2}+y^{2}+z^{2}+2 x-2 y-4 z-3=0$, how close and how far can it get to the origin? b) The distance between the point $P(x, y, z)$ and the point $A(1,-2,0)$ is twice the distance between P and the point $B(0,1,1)$. Show that the set of all such points is a sphere, and find its center and radius.
11. a) Find an equation for the plane \mathcal{P} that contains the line $L: x=3 t, \quad y=1+t, \quad z=2 t$, and is parallel to the intersection of the planes $y+z=-1$ and $2 x-y+z=6$. b) Show that the lines $L_{1}: x=-2+t, \quad y=$ $3+2 t, \quad z=4-t$ and $L_{2}: x=3-t, \quad y=4-2 t, \quad z=t$ are parallel, and find an equation for the plane they determine. c) Find the distance between L_{1} and L_{2}.
12. Let \vec{u} and \vec{v} be adjacent sides of a parallelogram. Use vectors to show that the parallelogram is a rectangle if the diagonals are equal in length.
13. Prove that for any vectors \vec{u} and \vec{v}, one has $\vec{u} \cdot \vec{v}=\frac{1}{4}\|\vec{u}+\vec{v}\|^{2}-\frac{1}{4}\|\vec{u}-\vec{v}\|^{2}$.
14. Review all the true/false problems from chapter 11 in the text.
