MAC 2313 (Calculus III)

Test 1 Review. Test 1 will cover all of chapter 11, except for section 11.7. You may skip problem 10 below.

- 1. Describe the given surface; if it is a sphere, state its radius and center. If it is a point, state its coordinates. a) $x^2 + y^2 + z^2 + 6x - 2y - 6 = 0$. b) $x^2 + y^2 + z^2 - 2mx - 6y - 8z + 50 = 0$, where m is a parameter, (discuss according to the values of m).
- 2. a) Find an equation for the sphere passing through the origin and centered at the point C(1, -2, 5). b) Decide whether the points A(2,3,1), B(-1,1,-2) and C(1,-1,1) are the vertices of an equilateral triangle.
- 3. Let $\overrightarrow{r}=2\overrightarrow{i}-3\overrightarrow{j}+4\overrightarrow{k}$, $\overrightarrow{z}=3\overrightarrow{j}-5\overrightarrow{k}$, and $\overrightarrow{v}=-2\overrightarrow{i}+\overrightarrow{j}-4\overrightarrow{k}$. a) Find the area of the parallelogram having \overrightarrow{r} and \overrightarrow{z} as adjacent sides. b) Find the volume of the parallelepiped having \overrightarrow{r} , \overrightarrow{z} and \overrightarrow{v} as adjacent edges. c) Find the acute angle θ between \overrightarrow{v} and the plane containing the face determined by \overrightarrow{r} and \overrightarrow{z} .
- 4. Consider the lines: $L_1: x = 4 2t$, y = 2 + 3t, z = 1 + t and $L_2: x = 2 + 4t$, y = 3 6t, z = -2t. a) Show that L_1 and L_2 are parallel lines. b) Find the distance between L_1 and L_2 .
- 5. a) Let $A(x_0, y_0, z_0)$ be a given point in 3-space. Let \mathcal{P} be the plane with equation ax + by + cz + d = 0. Write down the distance D between A and the plane \mathcal{P} .
- b) Use a) to find the distance between the two skew lines: $L_1: x=-2+t, y=3+2t, z=1+8t$ and $L_2: x = 1 - 2t, \quad y = -2 + 3t, \quad z = -1 + 5t.$
- 6. Let $\overrightarrow{w} = \overrightarrow{i} 2\overrightarrow{j} + 3\overrightarrow{k}$ and $\overrightarrow{v} = 2\overrightarrow{i} \overrightarrow{j} 5\overrightarrow{k}$. a) Find the vector component of \overrightarrow{v} that is parallel to \overrightarrow{w} and the vector component of \overrightarrow{v} that is orthogonal to \overrightarrow{w} . b) If θ denotes the angle between \overrightarrow{v} and \overrightarrow{w} , find $\cos(\theta)$ and $\sin(\theta)$. Is θ acute or obtuse? c) Find the direction angles of \overrightarrow{w} .
- 7. a) Set $\overrightarrow{u} = \overrightarrow{i} 3\overrightarrow{k}$, $\overrightarrow{v} = -\overrightarrow{j} + \overrightarrow{k}$ and $\overrightarrow{w} = 2\overrightarrow{i} \overrightarrow{j}$. Let $\overrightarrow{z} = \overrightarrow{i} \overrightarrow{j} + 2\overrightarrow{k}$. Find scalars a, b, and c such that $\overrightarrow{z} = a\overrightarrow{u} + b\overrightarrow{v} + c\overrightarrow{w}$. b) If we now set: $\overrightarrow{u} = \overrightarrow{i} + \overrightarrow{j} 2\overrightarrow{k}$, $\overrightarrow{v} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$ and $\overrightarrow{w} = \overrightarrow{i} \overrightarrow{j}$, find scalars α, β and γ such that $\overrightarrow{z} = \alpha \overrightarrow{u} + \beta \overrightarrow{v} + \gamma \overrightarrow{w}$.
- 8. a) Find parametric equations for the line through the points A(-1,2,3) and B(2,-3,4). b) Find the vector \overrightarrow{w} of norm 4 that is oppositely directed to $\vec{z}=2\vec{i}-\vec{j}+3\vec{k}$. c) Find parametric equations for the line through the point A(5,0,-2) that is parallel to the planes x-4y+2z=2 and 2x+3y-z+1=0. d) Find an equation for the plane through the points A(-2,1,4), B(1,0,3) that is perpendicular to the plane 4x-y+3z=-1. c) Let L be the line defined by the parametric equations x = 1 - 2t, y = 2 + 3t, z = 3 + t. Let \mathcal{P} be the plane defined by 2x + y - z = 4. c1) Show that L and \mathcal{P} are not perpendicular to each other. c2) Find an equation for the plane \mathcal{Q} that both contains L and is perpendicular to \mathcal{P} .
- 9. a) Show that the two lines $L_1: x = 1 t$, y = 2 + t, z = 1 + 5t, and $L_2: x = 2 + t$, y = 2 + 3t, z = -1 + 7tintersect, and find their point of intersection A. b) Find the acute angle θ between L_1 and L_2 at A. c) Find an equation for the plane that contains both L_1 and L_2 . d) Find an equation for the plane that contains both L_1 and the point B(1, -2, -1).
- 10. Find an equation for the surface that results when the elliptic cone $4x^2 + 9y^2 25z^2 = 0$ is reflected about the plane: i) x = 0, ii) y = 0, iii) z = 0, iv) x = y, v) y = z, vi) z = x.
- 11. a) If a bug walks on the sphere $x^2 + y^2 + z^2 + 2x 2y 4z 3 = 0$, how close and how far can it get to the origin? b) The distance between the point P(x, y, z) and the point A(1, -2, 0) is twice the distance between P and the point B(0,1,1). Show that the set of all such points is a sphere, and find its center and radius.
- 12. a) Find an equation for the plane \mathcal{P} that contains the line L: x = 3t, y = 1 + t, z = 2t, and is parallel to the intersection of the planes y+z=-1 and 2x-y+z=6. b) Show that the lines $L_1: x=-2+t, y=3+2t, z=4-t$ and $L_2: x=3-t$, y=4-2t, z=t are parallel, and find an equation for the plane they determine. c) Find the distance between L_1 and L_2 .
- 13. a) Convert from rectangular to cylindrical coordinates: i) $(4\sqrt{3}, 4, -4)$, ii) (-3, 3, -1).
- b) Convert from cylindrical to rectangular coordinates: i) $(4, \frac{\pi}{6}, -2)$, ii) $(7\frac{2\pi}{3}, 5)$.
- c) Convert from rectangular to spherical coordinates: i) $(\sqrt{3}, 1, -2)$, ii) $(-1, 1, \sqrt{2})$.
- d) Convert from spherical to spherical coordinates: i) $(3, \frac{5\pi}{4}, \frac{4\pi}{3})$, ii) $(4, \frac{7\pi}{12}, \frac{\pi}{6})$ e) Convert from cylindrical to spherical coordinates: i) $(\sqrt{5}, \frac{3\pi}{4}, -3)$, ii) $(3, \frac{11\pi}{6}, -2\sqrt{3})$. f) Convert from spherical to cylindrical coordinates: i) $(5, \frac{\pi}{4}, \frac{5\pi}{6})$, ii) $(4, \frac{\pi}{6}, \frac{\pi}{2})$.
- 14. Convert the given equation from a) cylindrical to rectangular coordinates: i) $r = 4 \sin \theta$, ii) r = z, iii) $r^2 \cos(2\theta) = z$ b) spherical to rectangular coordinates: i) $\theta = \frac{\pi}{3}$, ii) $\phi = \frac{\pi}{4}$, iii) $\rho = 2\sec\phi$, iv) $\rho\sin\phi = 2\cos\theta$, v) $\rho = 4\cos\phi$, vi) $\rho \sin \phi = \cot \phi$. c) Identify each surface.
- 15. Review all the true/false problems from chapter 11 in the text.