MAC 2311 (Calculus I)
TEST 2, Friday November 13, 2009

Name:

PID:

Remember that no documents or calculators are allowed during the exam. Be as precise as possible in your work; you shall show all your work to deserve the full mark assigned to any question. Do not cheat, otherwise I will be forced to give you a zero and report your act of cheating to the University Administration. Good Luck.

1. [20] Evaluate the following limits (Show all your work)
a) $\lim _{x \rightarrow 0} \frac{\sin (x)}{e^{x}-1}=$
b) $\lim _{x \rightarrow+\infty} \cos (\ln (2+x)-\ln (3+2 x))=$
c) $\lim _{x \rightarrow 0} \frac{x^{3}}{x-\tan (x)}=$
d) $\lim _{x \rightarrow 0^{+}}(\sin (2 x))^{x}=$
2. [8] Use an appropriate local linear approximation to estimate the value of $\sqrt[3]{26.46}$.
3. [8] A point P is moving along the curve $2 y-x^{3}=2$. When P is at $(2,5), y$ is increasing at the rate of 2 units $/ s$. How fast is x changing?
4. [10] State the Mean-value theorem. Show that the function f defined by $f(x)=x^{3}+x-4, \quad x$ in $[-1,2]$, satisfies all the requirements of the Mean Value Theorem. c) Find all numbers x_{0} in $(-1,2)$ such that $f^{\prime}\left(x_{0}\right)=\frac{f(2)-f(-1)}{2-(-1)}$.
5. [20] Find the derivative of each of the following functions (Show all your work, and simplify your answers as much as possible; you will not get any credit by guessing the correct answer(s).)
a) $f(x)=\cos \left(e^{x}\right)$
b) $g(x)=e^{(x \sin x)}$
c) $h(x)=\tan ^{-1}\left(x^{2}-x\right)$
d) $k(x)=\sin ^{-1}(\ln x)$
6. [14] The function $s(t)=t^{3}-6 t^{2}+9 t+1, \quad t \geq 0$, describes the position of a particle moving along a straight line, where s is in feet and t is in seconds. a) Find the velocity and acceleration functions. b) At what times is the particle stopped? c) When is the particle speeding up? Slowing down? d) Give a schematic picture of the motion.
7. [20] Evaluate each indefinite integral. (Show all your work)
a) $\int\left(\frac{-2 x^{13}+x^{3}-\frac{7}{1 \sqrt[1]{x}}+5}{x^{4}}\right) d x=$
b) $\int\left(x^{6}+e^{x}\right)^{1113}\left(6 x^{5}+e^{x}\right) d x=$
c) $\int \cos x \cos (\sin x) d x=$
d) $\int \sec x(\tan x+\sec x) d x=$

Bonus. [6] $\int \frac{x^{4}+2 x^{2}+3}{x^{2}+1} d x=$

