MAC 2311 (Calculus I)

Test 2, Monday November 21, 2011
Name: PID:

Remember that no documents or calculators are allowed during the exam. Be as precise as possible in your work; you shall show all your work to deserve the full mark assigned to any question. Do not cheat, otherwise I will be forced to give you a zero and report your act of cheating to the University administration. Good Luck.

1. [10] Find the following limits.
a) $\lim _{x \rightarrow \frac{\pi}{2}+} \sec (5 x) \cos (7 x)=$
b) $\lim _{x \rightarrow 0}(1-3 x)^{\frac{1}{2 x}}=$
2. [20] Let $f(x)=x^{3}+6 x^{2}+9 x+2$. a) Find the first and second derivatives of f. b) Find the intervals of increase and decrease. c) Find the intervals of concavity and the inflection point(s).
3. [20] Let $f(x)=x^{2} e^{x}$. Find all the critical points of f and state for each critical point whether a relative maximum, a relative minimum, or neither occurs. (You must show all your work, and clearly state which theorem you are using for the classification.)
4. [10] Find the maximum rectangular area that can be fenced with $\$ 2400$ if two opposite sides of the rectangle will use fencing costing $\$ 4$ per foot and the remaining sides will use fencing costing $\$ 6$ per foot.
5. [10] Decide whether the statement is true or false. No explanation is needed.
a) If f has a relative minimum at $x=1.01$, then $f(1.01) \leq f(1)$.
b) $\int f(x) g(x) d x=\int f(x) d x \int g(x) d x$.
c) If f has a relative extremum at $x=-2$, then $x=-2$ is a critical point of f.
d) If f and g have the same derivative function on an interval I, then f and g differ by a constant on I.
e) If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)>0$, then f has a local maximum at x_{0}.
6. [20] Find the following indefinite integrals.
a) $\int\left(x^{25}-\frac{10}{\sqrt[5]{x}}+\frac{7}{x^{3}}\right) d x=$
b) $\int \frac{\sqrt{1-x^{2}}}{-x^{2}+1} d x=$
c) $\int(\sin x-3 \sec x \tan x d x=$
d) $\int \frac{x^{3}+x-2}{1+x^{2}} d x=$
7. [10] a) State the Mean Value Theorem. b) Show that the function f defined by $f(x)=\sqrt{x}-2 x, \quad x$ in $[0,1]$, satisfies all the requirements of the Mean Value Theorem. c) Find all numbers x_{0} in $(0,1)$ such that $f^{\prime}\left(x_{0}\right)=\frac{f(1)-f(0)}{1-0}$.
